live-predavanje-08

Predavanje Život svemira

Astronomsko društvo “Alfa” i Departman za fiziku PMF-a u Nišu, u četvartak, 22. februara 2018. godine, od 20:00h organizuju predavanje Život svemira Predavač će biti dr Milan Milošević (Departman za fiziku PMF-a ...
nasa-super-blue-blood-moon_650x400_41517120266

Pomračenje krvavo plavog super Meseca

Tokom prethodnih nekoliko dana Mesec je ponovo stigao u centar interesovanja. Različiti naslovi pojavljuju se sa raznih strana, a tu su i različita predviđanja i najave za sutrašnje totalno pomračenjenje ...
fireworks-light-ancient-colisseum

13. januar - srpska Nova godina?

Stigao je još jedan 13. januar i “nova” godina. Ali, da li je ova Nova godina "Srpska" ili je ona možda Cezarova saznaćete u tekstu koji sledi. Od nastanka civilizacije ljudi su tražili sve ...
Slika dana: Godišnjica smrti Nikole Tesle [07.01.2014]

Na današnji dan umro je Nikola Tesla

Nikola Tesla (Smiljan, 10. jul 1856 — Njujork, 7. januar 1943) Credit: Napoleon Sarony / Wikipedia U Njujorku je na današnji dan, na Božić, 1943. godine umro jedan od najvećih istraživača koji ...
ny2018

Srećni praznici i uspešna 2018. godina

Dragi prijatelji, verni čitaoci i slučajni prolaznici, u lično ime i u ime sajta "Svet nauke" Vam želim srećne predstojeće Božićne, Novogodišnje i Božićne praznike, kao i srećnu i uspešnu 2018. ...
live-predavanje-02

Predavanje: Život zvezda i nastanak hemijskih elemenata

Astronomsko društvo “Alfa” i Departman za fiziku PMF-a u Nišu, u četvartak, 21. decembra 2017. godine, od 20:30h organizuju predavanje Život zvezda i nastanak hemijskih elemenata. Predavač će biti dr Milan Milošević ...

Postoje li dokazi?

Moderna slika formiranja elemenata uključuje puno različitih tipova nuklearnih reakcije koje se odigravaju u različitim stupnjevima evolucije zvezde. Laki elementi od vodonika do gvožđa, grade se prvo fuzijom, a zatim alfa zahvatom, koji dopunjava zahvat protona i radioaktivnim raspadom. Kako da znamo da zvezde zaista tako stvaraju teške elemente? Možemo li biti sigurni da je ovaj scenario verodostojan? U to nas uveravaju tri ubedljiva dokaza:

at21fg12.JPG

• Prvo, stopa zahvata različitih jezgra i stopa njihovog raspada poznata je iz laboratorijskih eksperimenata. Kada se ove vrednosti unesu u detaljne kompjuterske simulacije nuklearnih procesa koji se odigravaju u zvezdama i supernovama, predviđanja i posmatranja se slažu izuzetno dobro, za skoro svaki element sa slike. Podudaranje je neverovatno dobro za elemente do gvožđa i približno za teža jezgra. Prema tome iako niko nikada nije direktno posmatrao formiranje teških jezgara u zvezdama, možemo biti relativno sigurni da teorija nuklearne sinteze ima smisla u kontekstu nuklearne fizike i zvezdane evolucije. Iako je rezonovanje indirektno, slaganje teorije i posmatranja je tako dobro da većina astronoma to smatra kao čvrst dokaz koji podržava čitavu teoriju zvezdane evolucije i nukleosinteze.

• Drugo, prisustvo jednog određenog jezgra – tehnetiuma-99 – pruža neposredan dokaz da se formacije teških elemenata zaista odigrava u zvezdanim jezgrima. Laboratorijska merenja pokazuju da jezgro tehnetiuma ima period poluraspada od oko 200.000 godina. Astronomski gledano ovo je veoma kratko vreme. Niko nikada nije našao ni tragove prirodnog tehnetiuma na Zemlji zato što se sav raspao još davno. Uočeno prisustvo tehnetiuma u spektrima mnogobrojnih crvenih džinova sugeriše da je sintetisan kroz zahvat neutrona, jedini poznati način na koji tehnetium može da nastane, u poslednjih nekoliko stotina hiljada godina. Inače ga ne bismo mogli posmatrati. Mnogi astronomi smatraju spektroskopske dokaze za postojanje tehnetium dokazom za odigravanje s-procesa u razvijenim zvezdama.

at21fg17.JPG

• Treće, proučavanje tipičnih kriva zračenja supernova Tipa-I pokazuje da se radioaktivna jezgra formiraju kao rezultat eksplozije. Slika A pokazuje drastično povećanje osvetljenja u momentu eksplozije i karakteristično sporije smanjenje sjaja. U zavisnosti od inicijalne mase eksplodirajuće zvezde, sjaju treba od nekoliko meseci do više godina da se smanji na prvobitnu vrednost; međutim oblik krive raspada skoro je isti za sve zvezde. Ove krive imaju dve izražajne crte. Nakon početnog pika sjaj prvo ubrzano opada, a zatim je se opadanje usporava. Ova promena sjaja dešava se oko dva meseca posle eksplozije, bez obzira na njen intenzitet.

Na osnovu teorijskih modela eksplozije može se izračunati količina očekivanih novoformiranih elemenata, a njihovi periodi poluraspada su poznati iz laboratorijskih eksperimenata. Premda svaki radioaktivni raspad stvara poznatu količinu vidljive svetlosti, možemo utvrditi kako će svetlost emitovana od strane ovih nestabilnih elemenata varirati vremenom. Rezultat je poprilično dobro usaglašen sa posmatranom krivom sjaja na slici B – sjaj supernove Tipa-I potpuno je u saglasnosti sa raspadom od 0,6 solarnih masa nikla-56. Još više direktnih dokaza o prisustvu ovih nestabilnih jezgara dobijeno je 70-ih godina XX veka kada je pojava gama zračenja kobalta-56 u raspadu prvi put primećena kod supernove posmatrane u dalekoj galaksiji.

Series NavigationNajtezi elementiDa li je ovo kraj?