Izvori zvezdane energije

Proton-protonski ciklus

Proton-protonski ciklus

Izvori zvezdane energije su bili nepoznati sve do skoro polovine XX veka. Teorijskim otkrićem fuzije jezgara lakih elemenata problem izvora zvezdane energije je bio rešen. Danas se smatra da su od svih poznatih izvora energije samo:

  • gravitaciono sažimanje i
  • termonuklearne reakcije

u stanju da obezbede energiju neophodnu za dug život zvezde.

Gravitaciono sažimanje

U toku sporog sažimanje (sporost znači da se uslov hidrostatičke ravnoteže može smatrati zadvoljenim) jedna polovina oslobođene gravitacione potencijalne energije se pretvori u termalnu energiju dok se druga polovina izrači. U XIX veku Kelvin i Helmholc su smatrali da je gravitaciono sažimanje izvor sunčeve energije. Gravitaciono sažimanje ima značajnu ulogu u nekim fazama zvezdane evolucije, ali nije u stanju da obezbedi dovoljnu količinu energije za ceo život zvezde. Tokom procesa sažimanja povećava se gustina i zagreva materija u zvezdanoj unutrašnjosti, dok temperatura ne dostigne 107, neophodnih za početak termonuklearnih reakcija – osnovnog izvora zvezdane energije.

Termonuklearne reakcije

Sa razvojem nuklearne fizike ustanovljena je mogućnost fuzije lakih atomskih jezgara u teža, pri čemu dolazi do oslobađanja nuklearne energije prema Ajnštajnovoj relaciji E = \Delta mc2. Da bi došlo do spajanja dva atomska jezgra energija potrebna da se savlada njihova odbojna kulonova sila mora biti:

E > Z_1 \cdot Z_2 \cdot \frac {e<2} {\rho}

(Z – broj protona u jezgru , e – naelektrisanje elektrona, \rho – radijus atmoskog jezgra)

Kako je za savladavanje kulonovske barijere neophodna velika kinetička energija slobodnih jezgara, a u unutrašnjosti zvezda to znači veoma visoka temperatura. Termonuklearne reakcije se javljaju tek u kasnijoj fazi formiranja zvezde kada se sažimanjem u njenom jezgru ostvare povoljni uslovi. Visoke temperature obezbeđuju velike relativne brzine jezgara, a velika gustina veću verovatnoću da se jezgra nađu na manjem međusobnom rastojanju. Iako najveći broj protona nema potrebnu energiju za fuziju, izvestan broj protona ima znatno veću energiju pri istoj temperaturi što obezbeđuje termonuklearnu fuziju.

S obzirom da je vodonik najzastupljeniji element na zvezdama, moguće mehanizme njihove fuzije u helijum predložili su Vajceker i Bete. Prema njihovoj teoriji četiri jezgra vodonika stvaraju jezgro helijuma a razlika u masi se transformiše u energiju koja se izračuje. Najvećim delom γ zračenjem, manjim delom napušta zvezdu u obliku neutrina a ostatak ide na kinetičku energiju proizbedenih čestica. Razvojem teorije i eksperimenata predložene su brojne mogućnosti za reakcije i težih jezgara. Danas je teorija termonuklearne hemijskih elemenata u unutrašnjosti zvezde opšte prihvaćena.

Kada se skoro sav vodonik u zvezdanom jezgru istroši nema više ravnoteže između pritiska gasa i zračenja, sa jedne strane i gravitacione sile sa druge. Zbog toga dolazi do ponovnog gravitacionog sažimanja koje obezbeđuje povećanje temperature. Na znatno višim temperaturama od onih koje su od potrebne za sagorevanje vodonika, počinju reakcije sagorevanja helijuma u kojima dva helijumova jezgra (α čestice) daju nestabilno jezgro Be koje se, ukoliko za 10-16s ne sretne novo jezgro helijuma, raspada na prvobitne α čestice. U suprotnom, stvara se ugljenikovo jezgro uz oslobađanje ogromne energije. Ukoliko su temperature dovoljno visoke moguće je istovremena fuzija tri helijumova jezgra.

Uslovi neophodni za fuziju helijuma su temperature reda 108K i gustine veće nego za fuziju vodonika. Kod starih zvezda koje su istrošile vodonik u jezgru, unutrašnjost se gravitacionim sažimanjem sve više zagreva i postaje sve gušće. Tako se stvaraju uslovi za prodor α čestica u sve teža jezgra (ugljenika, kiseonika, neona itd.). Fuzijom težih jezgara oslobađa se manja energija po jedinici mase nego pri fuziji lakih jezgara. Takvi procesi obezbeđuju ravnotežu zvezde i sve kraće traju. Kada se kod starih zvezda istroši helijum u jezgru ostaje obilje C12 i O16, a takođe i drugih težih elemenata Si. Tada više nema zahvata helijmovih jezgara već dolazi do fuzije težih jezgara za šta su potrebne sve više temperature. Za fuziju C12 potrebna je temperatura T ≥ 7 x 108, za O16 T≈2 x 109K, a za fuziju Si28 u Fe56 T ≈ 5 x 109K. Ovako visoke temperature na račun sopstvenog sažimanja mogu da obezbede samo najmasivnije zvezde. Fuzija u zvezdi prestaje kada se u jezgru proizvedu elementi čiji je maseni broj A ≈ 56 (Fe, Co i Ni).

Series NavigationZvezda na glavnom nizuFaze posle glavnog niza
2 Comments
  1. avatar September 16, 2010
  2. avatar May 9, 2011

Leave a Reply

Your email address will not be published. Required fields are marked *

atomicbomb

Hirošima i Nagasaki - Rat je dobijen, a mir?

Tekst je prvi put objavljen avgusta 2007. godine Pre tačno 70 godine, tačnije 6. avgusta 1945. američki avion bombarder bacio je jednu jedinu bombu na japanski grad. Taj grad bila je ...
Termometar na suncu

(Kineski) termometar vs meteorolozi: ko laže?

Vreli letnji dani svake godine ožive jedan od "omiljenih" hobija na ovim prostorima - dokazivanje da izveštaji o temperaturi nisu tačni! Društvene mreže i stranice pojedinih medija prepone su fotografijama ...
sunbathing

Sunčanje i/ili zadravlje? Izaberite sami!

Tekst je prvi put objavljen jula 2007. godine u tri nastavka, pošto je tema značajnija svake godine objavljujem ga ponovo, uz manje tehničke izmene Sunce, taj žuti disk koji svakoga dana putuje po ...
Pluton - snimak New Horizons misije

Plutonov Horizont

Autor: Darko Donevski Sapiens Klub "Priroda je nedokučiva zbog kretanja", napisao je svojevremeno velikan svetskog slikarstva i osnivač suprematizma, Kazimir Maljevič. A šta je moderna nauka nego detaljna analiza kretanja. Da li ...
ATLAS sudari na 13TeV

LHC eksperimenti ponovo rade na novoj rekordnoj energiji

Ženeva, 3. jun 2015. Danas je CERN-ov Veliki hadronski sudarač (LHC) počeo da isporučuje fizičke podatke po prvi put u poslednjih 27 meseci. Posle skoro dvogodišnjeg isključenja i pripreme za ...
Sudari protona na 13TeV u ATLAS detektoru  (Foto: ATLAS)

​​ ​Prvi snimci sudara protona na 13 ТеV

Tokom protekle noći, protoni u Velikom hadronskom sudaraču (LHC) su po prvi put sudarani pri rekordnoj energiji od 13TeV. Ovi test sudari se koriste kako bi se podesili sistemi zaštite ...