Slide9

Predavanje Saturn - gospodar prstenova

Predavanje „Najvišu planetu vidim trostruko ili Saturn - gospodar prstenova" biće održano u četvrtak 4. marta od 19:00 h. Predavač će biti prof. dr Dragan Gajić.Predavanje možete pratiti na sajtu i YouTube kanalu AD Alfa, kao i na ...
Slide8

Predavanje “Da Jupitera nije bilo, ni nas ne bi bilo!”

Predavanje „Da Jupitera nije bilo, ni nas ne bi bilo!“ biće održano u četvrtak 18. februara od 19:00 h. Predavač će biti prof. dr Dragan Gajić.Predavanje možete pratiti na sajtu i YouTube kanalu AD ...
Slide7

Predavanje: “Mars – Mirna planeta boga rata”

Predavanje „Mars – Mirna planeta boga rata“ biće održano u četvrtak 11. februara od 19:00 h. Predavač će biti prof. dr Dragan Gajić.Predavanje možete pratiti na sajtu i YouTube kanalu Astronomskog društva “Alfa” iz Niša, kao ...
earth-sun

Svet nauke u 2020. godini

Stigao je kraj još jedne i to prilično "lude" godine. Godine u kojoj ništa nije bilo isto kao pre, godine u kojoj se mnogo toga promenilo, godine u kojoj mnogo ...
predavanje-02

Predavanje “Sunce – zvezda Sunčevog sistema”

U četvrtak 24. decembra od 19 h biće održano online predavanjeSunce – zvezda Sunčevog sistemapredavač će biti dr Milan Milošević. Predavanje možete pratiti na sajtu AD Alfa i na našem YouTube kanalu, kao i na ...
Jupiter-and-Saturn-777x466-1

Velika konjunkcija Jupitera i Saturna

Sutra, u ponedeljak 21. decembra 2020. godine dve najveće planete Sunčevog sistema. Jupiter i Saturn, na nebu će izgledati vrlo blizu. Kad padne mrak, na zapadu, nisko na horizontu sijaće ...

Izvori zvezdane energije

Proton-protonski ciklus

Proton-protonski ciklus

Izvori zvezdane energije su bili nepoznati sve do skoro polovine XX veka. Teorijskim otkrićem fuzije jezgara lakih elemenata problem izvora zvezdane energije je bio rešen. Danas se smatra da su od svih poznatih izvora energije samo:

  • gravitaciono sažimanje i
  • termonuklearne reakcije

u stanju da obezbede energiju neophodnu za dug život zvezde.

Gravitaciono sažimanje

U toku sporog sažimanje (sporost znači da se uslov hidrostatičke ravnoteže može smatrati zadvoljenim) jedna polovina oslobođene gravitacione potencijalne energije se pretvori u termalnu energiju dok se druga polovina izrači. U XIX veku Kelvin i Helmholc su smatrali da je gravitaciono sažimanje izvor sunčeve energije. Gravitaciono sažimanje ima značajnu ulogu u nekim fazama zvezdane evolucije, ali nije u stanju da obezbedi dovoljnu količinu energije za ceo život zvezde. Tokom procesa sažimanja povećava se gustina i zagreva materija u zvezdanoj unutrašnjosti, dok temperatura ne dostigne 107, neophodnih za početak termonuklearnih reakcija – osnovnog izvora zvezdane energije.

Termonuklearne reakcije

Sa razvojem nuklearne fizike ustanovljena je mogućnost fuzije lakih atomskih jezgara u teža, pri čemu dolazi do oslobađanja nuklearne energije prema Ajnštajnovoj relaciji E = \Delta mc2. Da bi došlo do spajanja dva atomska jezgra energija potrebna da se savlada njihova odbojna kulonova sila mora biti:

E > Z_1 \cdot Z_2 \cdot \frac {e<2} {\rho}

(Z – broj protona u jezgru , e – naelektrisanje elektrona, \rho – radijus atmoskog jezgra)

Kako je za savladavanje kulonovske barijere neophodna velika kinetička energija slobodnih jezgara, a u unutrašnjosti zvezda to znači veoma visoka temperatura. Termonuklearne reakcije se javljaju tek u kasnijoj fazi formiranja zvezde kada se sažimanjem u njenom jezgru ostvare povoljni uslovi. Visoke temperature obezbeđuju velike relativne brzine jezgara, a velika gustina veću verovatnoću da se jezgra nađu na manjem međusobnom rastojanju. Iako najveći broj protona nema potrebnu energiju za fuziju, izvestan broj protona ima znatno veću energiju pri istoj temperaturi što obezbeđuje termonuklearnu fuziju.

S obzirom da je vodonik najzastupljeniji element na zvezdama, moguće mehanizme njihove fuzije u helijum predložili su Vajceker i Bete. Prema njihovoj teoriji četiri jezgra vodonika stvaraju jezgro helijuma a razlika u masi se transformiše u energiju koja se izračuje. Najvećim delom γ zračenjem, manjim delom napušta zvezdu u obliku neutrina a ostatak ide na kinetičku energiju proizbedenih čestica. Razvojem teorije i eksperimenata predložene su brojne mogućnosti za reakcije i težih jezgara. Danas je teorija termonuklearne hemijskih elemenata u unutrašnjosti zvezde opšte prihvaćena.

Kada se skoro sav vodonik u zvezdanom jezgru istroši nema više ravnoteže između pritiska gasa i zračenja, sa jedne strane i gravitacione sile sa druge. Zbog toga dolazi do ponovnog gravitacionog sažimanja koje obezbeđuje povećanje temperature. Na znatno višim temperaturama od onih koje su od potrebne za sagorevanje vodonika, počinju reakcije sagorevanja helijuma u kojima dva helijumova jezgra (α čestice) daju nestabilno jezgro Be koje se, ukoliko za 10-16s ne sretne novo jezgro helijuma, raspada na prvobitne α čestice. U suprotnom, stvara se ugljenikovo jezgro uz oslobađanje ogromne energije. Ukoliko su temperature dovoljno visoke moguće je istovremena fuzija tri helijumova jezgra.

Uslovi neophodni za fuziju helijuma su temperature reda 108K i gustine veće nego za fuziju vodonika. Kod starih zvezda koje su istrošile vodonik u jezgru, unutrašnjost se gravitacionim sažimanjem sve više zagreva i postaje sve gušće. Tako se stvaraju uslovi za prodor α čestica u sve teža jezgra (ugljenika, kiseonika, neona itd.). Fuzijom težih jezgara oslobađa se manja energija po jedinici mase nego pri fuziji lakih jezgara. Takvi procesi obezbeđuju ravnotežu zvezde i sve kraće traju. Kada se kod starih zvezda istroši helijum u jezgru ostaje obilje C12 i O16, a takođe i drugih težih elemenata Si. Tada više nema zahvata helijmovih jezgara već dolazi do fuzije težih jezgara za šta su potrebne sve više temperature. Za fuziju C12 potrebna je temperatura T ≥ 7 x 108, za O16 T≈2 x 109K, a za fuziju Si28 u Fe56 T ≈ 5 x 109K. Ovako visoke temperature na račun sopstvenog sažimanja mogu da obezbede samo najmasivnije zvezde. Fuzija u zvezdi prestaje kada se u jezgru proizvedu elementi čiji je maseni broj A ≈ 56 (Fe, Co i Ni).

Series NavigationZvezda na glavnom nizuFaze posle glavnog niza
3 Comments
  1. avatar 16.09.2010.
  2. avatar 09.05.2011.
  3. avatar 01.01.2017.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: