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1 Kepler's Laws1.1 Celestial me
hani
s in simulating movement of planetsCelestial me
hani
s is, as it name says, the study of motion of 
elestial bodies like planets, stars et
.The law that explains motions of that obje
ts in the 
lassi
al universe is Newton's law of universalgravitation. So, in fa
t all equations of motion are based on Newton's laws.1.2 Equation of motionTo get equation for motion of planets going around the sun we take the two body system. Masses ofour bodies, supposedly a planet of our solar system and sun are marked as m1 and m2 , and ~r1, ~r2 aretheir radius ve
tors in some �xed inertial 
oordinate frame. The distan
e of the planets is then givenby the expression ~r = ~r2 − ~r1. From these fa
ts we get the for
e of gravitational pull whi
h is:
~F = −Gm1m2

~r

r3
(1)where G is a gravitational 
onstant. If we 
ombine that equation with Newton's se
ond law we willget an equation of motion whi
h is

m1 ~̈r1 = −Gm1m2
~r

r3
(2)If we want to get a equation of relative orbit of planet or obje
t with respe
t to the sun, 
an
elingmasses and subtra
ting we get the formula like this one

~̈r = −µ
~r

r3
(3)where µ = G(m1 + m2).Equation (1) solves the radius ve
tor and its se
ond derivative. For getting a usable solution we needto express the radius ve
tor as a fun
tion of time. There is no simple explanation how this is done butwe will dis
uss it later.If we want to get a geometri
 shape of the orbit we will have to derive the equation of the orbit. Todo that we 
an start from equation:

~r~e = re cos f (4)where ~e is a ve
tor that points to the dire
tion where the planet is 
losest to the sun in its orbit, ~r isa radius ve
tor of planet and f (known as true anomaly) is the angle between ve
tors ~r and ~e. Usingthe properties of s
alar produ
t and general properties of ve
tor ~e one 
an get [2℄ general equation of
oni
 se
tions (parabola, hyperbola or an ellipse) in polar 
oordinates:
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r =

k2

µ(1 + e cos f)
(5)where k is the magnitude of the angular momentum divided by the planet's mass and e is themagnitude of ~e, known as the e

entri
ity of the orbit.1.3 Orbital elementsTo be able to 
al
ulate the geometry of an orbit we must �rst de�ne orbital elements. So we havesemi-major axis (a), e

entri
ity (e), in
lination (i), longitude of the as
ending node (Ω), argumentof the perihelion (ω) and time of perihelion (τ). We 
an get semi-major axis if values of e and k areknown:

a =
k2

µ(|1 − e2|) (6)As said in the begining, when 
al
ulating an orbit of the planets we suppose that the orbit of ea
hplanet 
an be approximated as a two body system with the sun. Even tough the planets interfere withea
h other we 
an 
al
ulate the orbits pre
ise enough. But if we really want to be pre
ise we also musttake into a

ount, the perturbations of the orbits over some time, as they a

umulate.To simulate the orbits of planet we used orbital data from ([2℄, table E.9) whi
h gives the orbitalelements for all planets for August 1993. Same book, table E.10, gives us the elements as polynomials,in whi
h the variable T is the number of Julian 
enturys elapsed sin
e 1900, and it is given by:
T =

JD − 2415020

36525
(7)where JD is a Julian date.1.4 Orbit determinationThe orbit is being determined with orbital elements. To 
ompute the orbital elements we need at leastthree observations. Dire
tions are usually 
al
ulated from data taken a few nights apart. With thesedire
tion we will be able to �nd the 
orresponding absolute positions, but for that we need additional
onstrains of the orbit. So, we assume that the obje
t moves on the 
oni
 se
tion lying in the planethat passes through the sun. When we get at least three radius ve
tors of obje
t (one for ea
h night)we 
an �nd the ellipse going to those three dots from our observations. The more observations we havethe more a

urate our result will be.1.5 Determinating the position in the orbitKnowing everything we know till now, we still 
an't �nd the planet at the given time as we don't knowthe ~r as a fun
tion of time what is obiouvsly a problem. We 
an express radius ve
tor as

~r = a(cos E − e)~i + b(sin E)~j (8)Here ~i and ~j are unit ve
tors parallel to the major and minor axis. E is the e

entri
 anomaly, and
e is e

entri
ity of the orbit; a and b are semi-major and semi-minor axis of orbit (b = a

√
1 − e2. The
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e between the sun and the planets, magnitude of ~r 
an be 
al
ulated from equation (8), and itis:
r = a(1 − e cos E) (9)The value E at a moment of time is given by:
E − e sin E = M (10)where:
M =

2π(t − τ)

P
(11)For our simulation we used di�erent ways to 
al
ulate M. From equation (7) we 
an 
al
ulate Tand then using formulas from table E.10 at [2℄ (data for orbital elements) we 
an 
al
ulate L for ea
hplanet. Now M = L − ω̃, where ω̃ is longitude of perihelion.M is mean anomaly of time whi
h in
reases with 
onstant rate and if we put it in the equation (10)we get an equation for 
al
ulating position of the planet. Equation (10 
an't be solved analiti
ly so wemust use numeri
al methods to solve it. This is Kepler's equation. With these we know the positionof planet in the orbital plane. Simulations of orbits of planets a

ording these equations are shown on�gure (1) and (2).2 Motion in Central For
es2.1 Two Body ProblemWe 
onsider a system of two points of masses m1 and m2 , in whi
h there are for
es only due to anintera
tion potential V . We assume that V is only a fun
tion of a position ve
tor between m1 and m2 .Su
h a system has six degree of freedom and there are six independent generalized 
oordinates. Wesuppose that these are ve
tor 
oordinates of the 
enter-of-mass ~R, plus three 
omponents of relativeve
tor ~r = ~r1 − ~r2. The Lagrangian of system 
an be written as:

L = T ( ~̇R, ~̇r) − V (~r) (12)where kineti
 energy T is the sum of the kineti
 energy of the 
enter-of-mass system plus kineti
energy of the motion around it, T ′:
T =

1

2
(m1 + m2) ~̇R2 + T ′ (13)

T ′ =
1

2
m1~̇r

2 +
1

2
m2~̇r

′2 (14)It is well known that:
~r1

′ = − m2

m1 + m2
~r ~r2

′ =
m1

m1 + m2
~r (15)
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T ′ =

1

2

m1m2

m1 + m2
~̇r2 (16)So the Lagrangian from equation (12) be
omes:

L =
1

2
M ~̇R2 +

1

2
µ~̇r2 − V (~r) (17)where M = m1 + m2 is total mass, and µ = m1m2

m1+m2
stands for redu
ted mass of the system.From equation (17) one 
an see that the 
oordinates of ~̇R are 
y
li
 implying that the 
enter-of-massis eather �xed or in uniform motion.Now none of the equations of motion for ~r will 
ontain a term where ~̇R or ~R will o

ur, this is exa
tlythe situation what one will have if a 
enter of system would have been lo
ated in the 
enter of masswith additional parti
le at a distan
e ~r away of mass µ.Thus, the motion of two parti
les around the 
enter of mass, whi
h is a sour
e of a 
entral for
e, 
analways be redu
ted to equivalent problem of single body.2.2 Equation of MotionNow, we limit ourselves to 
onservative 
entral for
es for whi
h the potential is a fun
tion only of

r ,V (r). To solve this problem as easy as possible we 
an put the origin of the referen
e frame in the
enter of mass. As the potential depends only of r the problem has spheri
al symmetry and an angular
oordinate representing that rotation should be 
y
li
 providing another simpli�
ation to the problem.Due the spheri
al symmetry total angular momentum:
~L = ~r × ~p (18)is 
onserved. One 
an take the dire
tion of ~L along z -axis then the motion will take pla
e in (x,y) plane. The 
onservation of angular momentum provides three independent 
onstant of motion, buttwo of them, expressing the 
onstant dire
tion of angular momentum are used to redu
e the problemof three degree of freedom to only two.In polar 
oordinates the Lagrangian is given by:

L =
1

2
m(ṙ2 − r2θ̇2) − V (r) (19)Now, one 
an put this Lagrangian in Euler-Lagrange di�erential equation:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= 0 (20)Where qi stands for generalized 
oordinate. We should solve equation (20) for 
oordinates r and θ.The angle θ is the 
y
li
 
oordinate so the one equation of motion will be:
ṗθ =

d

dt

(

mr2θ̇
)

= 0 ⇒ mr2θ̇ = l = const (21)



Kepler's laws. Motion in 
entral for
es. Binary stars - 9 -where l is 
onstant modulus of angular momentum. The 
onservation of angular momentum isequivalent to saying the areolar velo
ity is 
onstant. That is the proof of Kepler's se
ond law ofplanetary motion.The se
ond Lagrange equation for r 
oordinates reads:
d

dt
(mṙ) − mr2θ̇2 +

∂V

∂r
= 0 (22)Denoting the for
e by F (r) and using the equation (21) equation (22) 
an be written as:

mr̈ − l2

mr3
= F (r) (23)where:

F (r) = m(r̈ − rθ̇2) (24)Re
alling the 
onservation of the total energy:
E = T + V =

1

2
m(ṙ2 + r2θ̇2) + V (r) (25)it is easily to write the equation (23) as:

ṙ =

√

2

m

(

E − T − l2

2mr2

) (26)
dt =

dr
√

2
m

(

E − T − l2

2mr2

)

(27)The integration on the right side is not simple. To simplify integration one should put
r =

M

−2E
(1 − e cos u) (28)and get:

t =
M

(−2E)
3

2

(u − e sin u) (29)where:
e =

√

(1 + 2E
L2

M2
) (30)is e

entri
ity of orbit, and for e > 1 (E > 0) - hyperboli
 orbit, e = 1 (E = 0) - paraboli
 orbit andfor e < 1 (E < 0) - ellipti
 orbit.In equations (28) and (29) u stands for the so 
alled "mean e

entri
 anomaly". The 
onne
tionbetween u and θ is given by:
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sin u =

√

(1 − e2) sin θ

1 + e cos θ
cos u =

cos θ + e

1 + e cos θ
(31)

cos θ =
cos u − e

1 − e cos u
sin θ =

√

(1 − e2) sin u

1 + e cos u
(32)Now the equation of orbit 
an be written in the form:

x = r cos θ =
M

−2E
(cos u − e) y = r sin θ =

L√
−2E

sin u (33)This equation lead to a harmoni
 fun
tion of time with 
oe�
ient that are standard Bessel fun
tions[1℄:
Jn(z) =

1

2π

∫ π

−π

ei(z sinu−nu)du (34)
x

a
= −3

2
e +

∞
∑

k=−∞
k 6=0

k−1Jk−1(ke) cos kωt
y

a
=

√

1 − e2

∞
∑

k=−∞
k 6=0

k−1Jk−1(ke) sin kωt (35)where
a =

L2/M

1 − e2
=

M

−2E
(36)is samimajor axis of orbit and

ω =

√
−2E

3

M
=

√

M

a3
. (37)3 Binary StarsLess than half of all stars are single star like sun. More than 50% belong to systems 
ontaining two ormore 
omponents. Binary star systems are 
lassi�ed a

ording to the data taken from observations.One of the most interesting types are e
lipsing binaries. Orbital planes of its 
omponents are orientedapproximately along the line of sight. In 
onsequen
e one star may periodi
ally pass in front of the otherblo
king the light of the e
lipsed 
omponent. This kind of system 
an be easily re
ognized by regular
hanges of light rea
hing the observer. The most 
onvenient way to analyze the observation data isto plot the light 
urve. This kind of fun
tion 
arries information about relative e�e
tive temperaturesand radii of ea
h 
omponent. It is also possible to analyze the position of orbital planes a

ording tothe position of the observer.The aim of our proje
t is to built a mathemati
al model that would �t to the hypotheti
al data givesimilar to observed light 
urve. For simpli
ity we assume in
lination equal 90◦ (e
lipses are total). Oursimulation solves 
ases in whi
h radii of 
omponents are either equal or di�erent but brightness andmasses stay the same. Both stars move around the 
enter of mass on the ellipti
al orbits. Observationsare often des
ribed as if one 
omponent remained stationary and the other orbited around it. That iswhy we simulate this kind of movement also. We �x our 
oordinate system on one star and measure
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ity in di�erent points on the orbit. Then we manage to plot the new orbit in the 
hanged
oordinate system.3.1 Simulating the OrbitsWe 
an apply equations (35) to simulate the orbit of binary stars. To do that the easiest approa
h isto use the 
enter-of-mass system. For that system we have:
µ =

m

2
M = 2m (38)where m is a mass of one of the stars. Now it is possible to 
al
ulate 
onstants e, a, ω of orbit forboth stars. From equations (30), (36) and (37) and than equations (35) represents a position of ea
hstar in the 
enter-of-mass system.The results are shown at images: (3) and (4).When we have the equations of motion in the 
enter-of-mass system we 
an 
hange the frame ofreferen
e and put it on the �rst star. Then we 
an plot the orbit of the se
ond star in a way theobserver from the �rst star sees it.The position of the stars in the 
enter-of-mass system is given by:

~r1 = x1 ~e1 + y1 ~e2 ~r2 = x2 ~e1 + y2 ~e2 (39)When ~r1 stands for radius ve
tor of star, ~e1 and ~e2 are unit ve
tor of x and y axis and (xi, yi) are
oordinates of star. Relative ve
tor of the se
ond star is ~e1 and ~e2

~r = (x2 − x1)~e1 + (y2 − y1)~e2 (40)To express ~r in a new referen
e frame one have to express ~e1 and ~e2 as a fun
tion of ~e1
′ and ~e2

′.Consider the rotation of referen
e frame from ~e1, ~e2 for angle θ. Then we have
~e1

′ = cos θ ~e1 + sin θ ~e2 = sin θ(cot θ ~e1 + ~e2) (41)
~e2

′ = − sin θ ~e1 + cos θ ~e2 = sin θ(−~e1 + cot θ ~e2) (42)It is well known that:
sin θ =

tan θ√
tan2 θ + 1

=
k√

k2 + 1
(43)where k = tan θ 
an be determined from the equations (35) as:

k =
dy

dx
=

dy

dt

dt

dx
=

dy
dt
dx
dt

(44)After some mathemati
al transformations we �nally get:
~e1 =

1√
k2 + 1

(~e1
′ − k~e2

′) ~e2 =
1√

k2 + 1
(k~e1

′ + ~e2
′) (45)
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~r =

(

(x2 − x1)
1√

k2 + 1
+ (y2 − y1)

k√
k2 + 1

)

~e1 +

(

−(x2 − x1)
k√

k2 + 1
+ (y2 − y1)

1√
k2 + 1

)

~e2(46)Where x1, y1, x2 and y2 are fun
tions of time.If we plot equation (46) as a fun
tion of time we 
an see the orbit of the se
ond star in the referen
eframe �xed on the �rst star.Results of this simulation are at image (5).3.2 Simulation of Light CurveAt the end we simulate a light 
urve of the e
lipsing binary system we analyzed before.Time of e
lipses 
an be determined in this way. If the observer is at 
oordinates (xp, yp) than thee
lipse will be when all three points (xp, yp), (x1, y1) and (x2, y2) are on the straight line, or
(xp − x1)(y2 − y1) − (yp − y1)(x2 − x1) = 0 (47)The main task in simulating the light 
urve is the determination of the visible area during the e
lipseas a fun
tion of time. The area is given by: S = S1 + S2 −△S, where S1 and S2 are areas of �rst andse
ond star and △S is 
overed area. This area, △S, 
an be 
al
ulated using the rules of analyti
algeometry as:

△S = 2

∫ x2

x1

∫

√
r2−x2

0
dxdy (48)After determination the visible area of star relative brightness of the system is expressed by equation:

△m = −2.5 log
f12

f2
= −2.5 log

S

S −△S
(49)if we assume that both stars have the same luminosity. Equation (49) represents the light 
urve forthe simulated system of e
lipsing binary stars. The light 
urve is shown on image (6).Referen
es[1℄ C. Misner, K. Thorne, J. Wheeler: Gravitation, p. 644-649[2℄ H. Karttunen: Fundamental Astronomy[3℄ B. Carroll, D. Ostlie: An Introdu
tion to Modern Astronomy
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Orbit of Jupiter
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Figure 1: Orbit of Jupiter. In this simulation we used only formulas for Kepler's law and orbitalelements for the planet.
Solar System (Mercury, Venus, Earth, Mars and Jupiter)
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Figure 2: Simulation of orbits of �rst �ve planets in our solar system. This simulation shows therelative position of planets a

ording to orbital datas.
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Figure 3: Simulation of orbit of one star with big e

entri
ity (e=0.9 ). In this 
ase the orbits are
al
ulated by equations (35).
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Figure 4: Orbits of stars around the 
enter of mass in the binary system.
System on the 1st star
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xFigure 5: Simulation of orbit of the se
ond star when the referen
e frame is �xed on the �rst star.This is the way how observer on the �rst star see the se
ond star.
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Figure 6: Light 
urve of an e
lipsing binary system. For this simulation we assume that relativeradius of stars are: r1 = 3 and r2 = 1. We assume that speed during the e
lipse is 
onstant, speedand time of e
lipse is 
al
ulated from the simulation of orbits in 
enter-of-mass system.


