
Kepler's laws. Motion in entral fores. Binary stars - 5 -Kepler's laws. Motion in entral fores. Binary starsMilan Milosevi, Oliwia Madej, Damir Andrasevi1 Kepler's Laws1.1 Celestial mehanis in simulating movement of planetsCelestial mehanis is, as it name says, the study of motion of elestial bodies like planets, stars et.The law that explains motions of that objets in the lassial universe is Newton's law of universalgravitation. So, in fat all equations of motion are based on Newton's laws.1.2 Equation of motionTo get equation for motion of planets going around the sun we take the two body system. Masses ofour bodies, supposedly a planet of our solar system and sun are marked as m1 and m2 , and ~r1, ~r2 aretheir radius vetors in some �xed inertial oordinate frame. The distane of the planets is then givenby the expression ~r = ~r2 − ~r1. From these fats we get the fore of gravitational pull whih is:
~F = −Gm1m2

~r

r3
(1)where G is a gravitational onstant. If we ombine that equation with Newton's seond law we willget an equation of motion whih is

m1 ~̈r1 = −Gm1m2
~r

r3
(2)If we want to get a equation of relative orbit of planet or objet with respet to the sun, anelingmasses and subtrating we get the formula like this one

~̈r = −µ
~r

r3
(3)where µ = G(m1 + m2).Equation (1) solves the radius vetor and its seond derivative. For getting a usable solution we needto express the radius vetor as a funtion of time. There is no simple explanation how this is done butwe will disuss it later.If we want to get a geometri shape of the orbit we will have to derive the equation of the orbit. Todo that we an start from equation:

~r~e = re cos f (4)where ~e is a vetor that points to the diretion where the planet is losest to the sun in its orbit, ~r isa radius vetor of planet and f (known as true anomaly) is the angle between vetors ~r and ~e. Usingthe properties of salar produt and general properties of vetor ~e one an get [2℄ general equation ofoni setions (parabola, hyperbola or an ellipse) in polar oordinates:
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r =

k2

µ(1 + e cos f)
(5)where k is the magnitude of the angular momentum divided by the planet's mass and e is themagnitude of ~e, known as the eentriity of the orbit.1.3 Orbital elementsTo be able to alulate the geometry of an orbit we must �rst de�ne orbital elements. So we havesemi-major axis (a), eentriity (e), inlination (i), longitude of the asending node (Ω), argumentof the perihelion (ω) and time of perihelion (τ). We an get semi-major axis if values of e and k areknown:

a =
k2

µ(|1 − e2|) (6)As said in the begining, when alulating an orbit of the planets we suppose that the orbit of eahplanet an be approximated as a two body system with the sun. Even tough the planets interfere witheah other we an alulate the orbits preise enough. But if we really want to be preise we also musttake into aount, the perturbations of the orbits over some time, as they aumulate.To simulate the orbits of planet we used orbital data from ([2℄, table E.9) whih gives the orbitalelements for all planets for August 1993. Same book, table E.10, gives us the elements as polynomials,in whih the variable T is the number of Julian enturys elapsed sine 1900, and it is given by:
T =

JD − 2415020

36525
(7)where JD is a Julian date.1.4 Orbit determinationThe orbit is being determined with orbital elements. To ompute the orbital elements we need at leastthree observations. Diretions are usually alulated from data taken a few nights apart. With thesediretion we will be able to �nd the orresponding absolute positions, but for that we need additionalonstrains of the orbit. So, we assume that the objet moves on the oni setion lying in the planethat passes through the sun. When we get at least three radius vetors of objet (one for eah night)we an �nd the ellipse going to those three dots from our observations. The more observations we havethe more aurate our result will be.1.5 Determinating the position in the orbitKnowing everything we know till now, we still an't �nd the planet at the given time as we don't knowthe ~r as a funtion of time what is obiouvsly a problem. We an express radius vetor as

~r = a(cos E − e)~i + b(sin E)~j (8)Here ~i and ~j are unit vetors parallel to the major and minor axis. E is the eentri anomaly, and
e is eentriity of the orbit; a and b are semi-major and semi-minor axis of orbit (b = a

√
1 − e2. The



Kepler's laws. Motion in entral fores. Binary stars - 7 -distane between the sun and the planets, magnitude of ~r an be alulated from equation (8), and itis:
r = a(1 − e cos E) (9)The value E at a moment of time is given by:
E − e sin E = M (10)where:
M =

2π(t − τ)

P
(11)For our simulation we used di�erent ways to alulate M. From equation (7) we an alulate Tand then using formulas from table E.10 at [2℄ (data for orbital elements) we an alulate L for eahplanet. Now M = L − ω̃, where ω̃ is longitude of perihelion.M is mean anomaly of time whih inreases with onstant rate and if we put it in the equation (10)we get an equation for alulating position of the planet. Equation (10 an't be solved analitily so wemust use numerial methods to solve it. This is Kepler's equation. With these we know the positionof planet in the orbital plane. Simulations of orbits of planets aording these equations are shown on�gure (1) and (2).2 Motion in Central Fores2.1 Two Body ProblemWe onsider a system of two points of masses m1 and m2 , in whih there are fores only due to aninteration potential V . We assume that V is only a funtion of a position vetor between m1 and m2 .Suh a system has six degree of freedom and there are six independent generalized oordinates. Wesuppose that these are vetor oordinates of the enter-of-mass ~R, plus three omponents of relativevetor ~r = ~r1 − ~r2. The Lagrangian of system an be written as:

L = T ( ~̇R, ~̇r) − V (~r) (12)where kineti energy T is the sum of the kineti energy of the enter-of-mass system plus kinetienergy of the motion around it, T ′:
T =

1

2
(m1 + m2) ~̇R2 + T ′ (13)

T ′ =
1

2
m1~̇r

2 +
1

2
m2~̇r

′2 (14)It is well known that:
~r1

′ = − m2

m1 + m2
~r ~r2

′ =
m1

m1 + m2
~r (15)
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T ′ =

1

2

m1m2

m1 + m2
~̇r2 (16)So the Lagrangian from equation (12) beomes:

L =
1

2
M ~̇R2 +

1

2
µ~̇r2 − V (~r) (17)where M = m1 + m2 is total mass, and µ = m1m2

m1+m2
stands for reduted mass of the system.From equation (17) one an see that the oordinates of ~̇R are yli implying that the enter-of-massis eather �xed or in uniform motion.Now none of the equations of motion for ~r will ontain a term where ~̇R or ~R will our, this is exatlythe situation what one will have if a enter of system would have been loated in the enter of masswith additional partile at a distane ~r away of mass µ.Thus, the motion of two partiles around the enter of mass, whih is a soure of a entral fore, analways be reduted to equivalent problem of single body.2.2 Equation of MotionNow, we limit ourselves to onservative entral fores for whih the potential is a funtion only of

r ,V (r). To solve this problem as easy as possible we an put the origin of the referene frame in theenter of mass. As the potential depends only of r the problem has spherial symmetry and an angularoordinate representing that rotation should be yli providing another simpli�ation to the problem.Due the spherial symmetry total angular momentum:
~L = ~r × ~p (18)is onserved. One an take the diretion of ~L along z -axis then the motion will take plae in (x,y) plane. The onservation of angular momentum provides three independent onstant of motion, buttwo of them, expressing the onstant diretion of angular momentum are used to redue the problemof three degree of freedom to only two.In polar oordinates the Lagrangian is given by:

L =
1

2
m(ṙ2 − r2θ̇2) − V (r) (19)Now, one an put this Lagrangian in Euler-Lagrange di�erential equation:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= 0 (20)Where qi stands for generalized oordinate. We should solve equation (20) for oordinates r and θ.The angle θ is the yli oordinate so the one equation of motion will be:
ṗθ =

d

dt

(

mr2θ̇
)

= 0 ⇒ mr2θ̇ = l = const (21)



Kepler's laws. Motion in entral fores. Binary stars - 9 -where l is onstant modulus of angular momentum. The onservation of angular momentum isequivalent to saying the areolar veloity is onstant. That is the proof of Kepler's seond law ofplanetary motion.The seond Lagrange equation for r oordinates reads:
d

dt
(mṙ) − mr2θ̇2 +

∂V

∂r
= 0 (22)Denoting the fore by F (r) and using the equation (21) equation (22) an be written as:

mr̈ − l2

mr3
= F (r) (23)where:

F (r) = m(r̈ − rθ̇2) (24)Realling the onservation of the total energy:
E = T + V =

1

2
m(ṙ2 + r2θ̇2) + V (r) (25)it is easily to write the equation (23) as:

ṙ =

√

2

m

(

E − T − l2

2mr2

) (26)
dt =

dr
√

2
m

(

E − T − l2

2mr2

)

(27)The integration on the right side is not simple. To simplify integration one should put
r =

M

−2E
(1 − e cos u) (28)and get:

t =
M

(−2E)
3

2

(u − e sin u) (29)where:
e =

√

(1 + 2E
L2

M2
) (30)is eentriity of orbit, and for e > 1 (E > 0) - hyperboli orbit, e = 1 (E = 0) - paraboli orbit andfor e < 1 (E < 0) - ellipti orbit.In equations (28) and (29) u stands for the so alled "mean eentri anomaly". The onnetionbetween u and θ is given by:
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sin u =

√

(1 − e2) sin θ

1 + e cos θ
cos u =

cos θ + e

1 + e cos θ
(31)

cos θ =
cos u − e

1 − e cos u
sin θ =

√

(1 − e2) sin u

1 + e cos u
(32)Now the equation of orbit an be written in the form:

x = r cos θ =
M

−2E
(cos u − e) y = r sin θ =

L√
−2E

sin u (33)This equation lead to a harmoni funtion of time with oe�ient that are standard Bessel funtions[1℄:
Jn(z) =

1

2π

∫ π

−π

ei(z sinu−nu)du (34)
x

a
= −3

2
e +

∞
∑

k=−∞
k 6=0

k−1Jk−1(ke) cos kωt
y

a
=

√

1 − e2

∞
∑

k=−∞
k 6=0

k−1Jk−1(ke) sin kωt (35)where
a =

L2/M

1 − e2
=

M

−2E
(36)is samimajor axis of orbit and

ω =

√
−2E

3

M
=

√

M

a3
. (37)3 Binary StarsLess than half of all stars are single star like sun. More than 50% belong to systems ontaining two ormore omponents. Binary star systems are lassi�ed aording to the data taken from observations.One of the most interesting types are elipsing binaries. Orbital planes of its omponents are orientedapproximately along the line of sight. In onsequene one star may periodially pass in front of the otherbloking the light of the elipsed omponent. This kind of system an be easily reognized by regularhanges of light reahing the observer. The most onvenient way to analyze the observation data isto plot the light urve. This kind of funtion arries information about relative e�etive temperaturesand radii of eah omponent. It is also possible to analyze the position of orbital planes aording tothe position of the observer.The aim of our projet is to built a mathematial model that would �t to the hypothetial data givesimilar to observed light urve. For simpliity we assume inlination equal 90◦ (elipses are total). Oursimulation solves ases in whih radii of omponents are either equal or di�erent but brightness andmasses stay the same. Both stars move around the enter of mass on the elliptial orbits. Observationsare often desribed as if one omponent remained stationary and the other orbited around it. That iswhy we simulate this kind of movement also. We �x our oordinate system on one star and measure



Kepler's laws. Motion in entral fores. Binary stars - 11 -veloity in di�erent points on the orbit. Then we manage to plot the new orbit in the hangedoordinate system.3.1 Simulating the OrbitsWe an apply equations (35) to simulate the orbit of binary stars. To do that the easiest approah isto use the enter-of-mass system. For that system we have:
µ =

m

2
M = 2m (38)where m is a mass of one of the stars. Now it is possible to alulate onstants e, a, ω of orbit forboth stars. From equations (30), (36) and (37) and than equations (35) represents a position of eahstar in the enter-of-mass system.The results are shown at images: (3) and (4).When we have the equations of motion in the enter-of-mass system we an hange the frame ofreferene and put it on the �rst star. Then we an plot the orbit of the seond star in a way theobserver from the �rst star sees it.The position of the stars in the enter-of-mass system is given by:

~r1 = x1 ~e1 + y1 ~e2 ~r2 = x2 ~e1 + y2 ~e2 (39)When ~r1 stands for radius vetor of star, ~e1 and ~e2 are unit vetor of x and y axis and (xi, yi) areoordinates of star. Relative vetor of the seond star is ~e1 and ~e2

~r = (x2 − x1)~e1 + (y2 − y1)~e2 (40)To express ~r in a new referene frame one have to express ~e1 and ~e2 as a funtion of ~e1
′ and ~e2

′.Consider the rotation of referene frame from ~e1, ~e2 for angle θ. Then we have
~e1

′ = cos θ ~e1 + sin θ ~e2 = sin θ(cot θ ~e1 + ~e2) (41)
~e2

′ = − sin θ ~e1 + cos θ ~e2 = sin θ(−~e1 + cot θ ~e2) (42)It is well known that:
sin θ =

tan θ√
tan2 θ + 1

=
k√

k2 + 1
(43)where k = tan θ an be determined from the equations (35) as:

k =
dy

dx
=

dy

dt

dt

dx
=

dy
dt
dx
dt

(44)After some mathematial transformations we �nally get:
~e1 =

1√
k2 + 1

(~e1
′ − k~e2

′) ~e2 =
1√

k2 + 1
(k~e1

′ + ~e2
′) (45)
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~r =

(

(x2 − x1)
1√

k2 + 1
+ (y2 − y1)

k√
k2 + 1

)

~e1 +

(

−(x2 − x1)
k√

k2 + 1
+ (y2 − y1)

1√
k2 + 1

)

~e2(46)Where x1, y1, x2 and y2 are funtions of time.If we plot equation (46) as a funtion of time we an see the orbit of the seond star in the refereneframe �xed on the �rst star.Results of this simulation are at image (5).3.2 Simulation of Light CurveAt the end we simulate a light urve of the elipsing binary system we analyzed before.Time of elipses an be determined in this way. If the observer is at oordinates (xp, yp) than theelipse will be when all three points (xp, yp), (x1, y1) and (x2, y2) are on the straight line, or
(xp − x1)(y2 − y1) − (yp − y1)(x2 − x1) = 0 (47)The main task in simulating the light urve is the determination of the visible area during the elipseas a funtion of time. The area is given by: S = S1 + S2 −△S, where S1 and S2 are areas of �rst andseond star and △S is overed area. This area, △S, an be alulated using the rules of analytialgeometry as:

△S = 2

∫ x2

x1

∫

√
r2−x2

0
dxdy (48)After determination the visible area of star relative brightness of the system is expressed by equation:

△m = −2.5 log
f12

f2
= −2.5 log

S

S −△S
(49)if we assume that both stars have the same luminosity. Equation (49) represents the light urve forthe simulated system of elipsing binary stars. The light urve is shown on image (6).Referenes[1℄ C. Misner, K. Thorne, J. Wheeler: Gravitation, p. 644-649[2℄ H. Karttunen: Fundamental Astronomy[3℄ B. Carroll, D. Ostlie: An Introdution to Modern Astronomy
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Orbit of Jupiter
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Figure 1: Orbit of Jupiter. In this simulation we used only formulas for Kepler's law and orbitalelements for the planet.
Solar System (Mercury, Venus, Earth, Mars and Jupiter)
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Figure 2: Simulation of orbits of �rst �ve planets in our solar system. This simulation shows therelative position of planets aording to orbital datas.
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Figure 3: Simulation of orbit of one star with big eentriity (e=0.9 ). In this ase the orbits arealulated by equations (35).
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Figure 4: Orbits of stars around the enter of mass in the binary system.
System on the 1st star
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xFigure 5: Simulation of orbit of the seond star when the referene frame is �xed on the �rst star.This is the way how observer on the �rst star see the seond star.
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Figure 6: Light urve of an elipsing binary system. For this simulation we assume that relativeradius of stars are: r1 = 3 and r2 = 1. We assume that speed during the elipse is onstant, speedand time of elipse is alulated from the simulation of orbits in enter-of-mass system.


