kvizicar-baner

Kviz “Kakav si kvizičar?” na NNB11

Departman za fiziku Prirodno-matematičkog fakulteta u Nišu organizuje kviz “Kakav si kvizičar?” iz poznavanja fizike za učenike osnovnih i srednjih škola. Kviz čini deo programa postavke Departmana za fiziku u ...
davinci

Leonardo da Vinči: Umetnik. Naučnik. Pronalazač.

Pišu: Jovana Savić i Jovana Stanimirović“Onaj ko isključivo ceni praksu bez teorije je poput moreplovca koji se ukrca na brod bez kormila i kompasa, ne znajući kuda se plovi.” - ...
crna-rupa-prva

Prva fotografija crne rupe!

Već nekoliko decenija, a može se reći i vekova, crne rupe privlače ogromnu pažnju kako naučnika tako i javnosti, kroz popularne tekstove, različite ideje i SF romane i (visokobudžetne) filmove.Do ...
dositej-obradovic

Dositej Obradović – srpski prosvetitelj i reformator

„Knjige, braćo moja, knjige, a ne zvona i praporce!“Dositej ObradovićNa današnji dan 28. marta 1811. godine u Beogradu je umro najveći srpski prosvetitelj i reformator – Dositej Obradović. Sahranjen je ...
proposal

CERN – mesto gde je nastao “Internet”

Prvi World Wide Web Logo (Autor: Robert Cailliau)Prethodnih nekoliko godina imali smo prilike da često slušamo o CERN-u, LHC-u - i "najvećem eksperimentu čovečanstva", ulasku Srbije u punopravno članstvo, akceleratoru, ...
using-a-smartphone-accelerometer

Konkurs Mobilni telefon u fizičkom eksperimentu

Digitalna tehnologija i mediji, zasnovani na upotrebi interneta i mobilnih telefona predstavljaju najpopularniji način komuniciranja u savremenom svetu. Mobilni telefoni su naša svakodnevica, a novi modeli se po svojim mogućnostima ...

Paradoks blizanaca

Predviđanja STR o dilataciji vremena navode na neke vrlo zanimljive, a možda i zastrašujuće ideje. Efekat dilatacije vremena mogao bi da ima neke vrlo interesantne primene za vasionska putovanja. STR ne samo da predviđa da će na raketi koja se kreće relativno brzinom bliskoj brzini svetlosti samo vreme proticati sporije, ona takođe predviđa da će SVI procesi biti usporeni. To znači procesi varenja hrane, biološki procesi, atomska aktivnost – sve će biti usporeno!
Zamislimo “zvezdanog putnika” iz daleke budućnosti koji kreće na “godišnji odmor” do zvezde Arcturus (sazvežđe Bootes, Pastir) udaljene 33 svetlosne godine. On ulazi u svoju rakeu i kreće na putovanje brzinom približnom brzini svetlosti. Ako stalno putuje tom brzinom na Arcturus će stići za malo više od 33 godine, ali po vremenu na Zemlji Ako bi odmah krenuo natrag na Zemlju bi stigao približno 66 godina nakon odlaska.

Kako se raketa celo vreme kretala ogromnom brzinom u odnosu na Zemlju svi procesi na raketi biće usporeni, putniku u raketi neće izgledati da je proteklo 33 godine za put u jednom smeru, on će stići u blizinu Arcturusa otprilike baš u vreme ručka, a kad se bude vratio na Zemlju izgledaće mu da je prošao samo jedan dan! Ali, ljudima na Zemlji to će biti 66 godina, ljudi na Zemlji će biti 66 godina stariji.

Jedan rezultat koji predviđa STR bio je izvor velike nedoumice i izvesnog neslaganja od vremena svog predstavljanja. To je tzv. paradoks blizanaca ili vremenski paradoks.

Pretpostavimo da od dva blizanca jedan odlazi na putovanje do neke daleke zvezde i natrag a drugi ostaje na Zemlji. Neka je ta zvezda udaljena 4 svetlosne godine od Zemlje, a da se raketa kreće prosečnom brzinom koja je jednaka brzine svetlosti. Ukupno vreme za njeno putovanje biće tada oko 10 godina.

Ako uporedimo brzinu proticanja vremena za blizanca u raketi sa brzinom proticanja vremena na Zemlji, na osnovu jednačine (6) dobija se:

eqn014.gif

Ovo znači da iako je putovanje trajalo deset godina prema časovniku blizanca na Zemlji, prema časovniku onog u raketi putovanje je trajalo samo šest godina. Po povratku sa puta blizanac će shvatiti da nije ostario onoliko kolko i njegov brat koji je stao na Zemlji.

Paradoks se ovde ogleda u tome da pošto su sva kretanja relativna može da se smatra da je Zemlja otišla u svemirski prostor u pravcu suprotnom od rakete i vratila se dok je raketa mirovala. Na osnovu takvog razmatranja kretanja dolazi se do suprotnog zaključka – blizanac u raketi čekaće 10 godina na povratak svog brata, koji će misliti da je u putovanju (sa Zemljom) proveo samo šest godina.

Očigledno je da ova dva tumačenja ne mogu istovremeno biti tačna. Upravo ova kontradikcija predstavlja tzv. paradoks blizanaca.

Rešenje paradoksa je vrlo jednostavno, tačnije paradoks uopšte ne postoji pošto ove dve situacije nisu simetrične, pa nisu ni matematički reverzibilne. Razlog nepostojanja simetrije je taj što raketa na svom putovanju trpi određena ubrzanja, a pretpostavka da Zemlja odlazi na putovanje nije ispravna jer bi u tom slučaju Zemlja morala da trpi odgovarajuća ubrzanja umesto rakete, a poznato je da se to ne dešava.

STR neizbežno vodi do zaključka da će za vasionskog putnika na kružnom putovanju proći ukupno manje vremena, nezavisno od načina merenja, nego za ljude koji ostaju na Zemlji. Svaki putnik će se na Zemlju vratiti manje ostareo nego oni koji su ostali d aga čekaju. Ukupan iznos usporenja vremena zavisiće od brzine rakete u odnosu na Zemlju i ukupnog pređenog rastojanja za vreme puta.

Do fizičke osnova ovakvog zaključka može se doći poređenjem onoga što svaki blizanac vidi kad posmatra svetlosne talase primljene iz niza događaja koji se dešavaju u sistemu onog drugog.

Tokom prve polovine putovanja, zbog brzine kojom se raketa udaljava od Zemlje, svetlosni talasi događaja na Zemlji stizaće do rakete sporijim tempom, učestalošću, nego kad bi raketa mirovala. Za brzinu rakete od 4/5 brzine svetlosti, ovo usporenje je dato formulom za tzv. relativistički Doplerov pomak, prema kojoj će učestalost biti 1/3 od normalne. Na sličan način za vreme povratka blizanac u raketi posmatra događaje na Zemlji kao da se odigravaju tri puta bržim tempom. Tokom celog putovanja blizanac na raketi registruje događaje na Zemlji kao da se odigravaju prosečnim tempom od 5/3 (što je prosek za od jedne trećine i tri). Znači, rezultat je da blizanac na raketi zapaža da vreme na Zemlji protiče u proseku brže nego na raketi, pri čemu tačan odnos iznosi 5/3, zbog toga će deset godina na Zemlji biti kao šest godina na raketi.

Situacija koju vidi blizanac na Zemlji je obrnuta. On svetlosne talase događaja koji se na raketi odigravaju tokom prve polovine putovanja prima ukupno devet godina. To je zbog toga što raketi treba pet godina Zemaljskog vremena da stigne do zvezde i još četiri godine su potrebne svetlosnim talasima da stignu sa udaljene rakete do Zemlje, jer se raketa nalazi na rastojanju od četiri svetlosne godine. Tokom ovih devet godina blizanac na Zemlji posmatra događaje tri puta sporije od normalnog tempa, u skladu sa relativističkom formulom Doplerovog pomaka.

Događaje koji se odigravaju na raketi tokom povratka na Zemlju blizanac sa Zemlje će posmatrati samo poslednje, desete godine. Za vreme ove poslednje godine on će događaje na raketi videti kao da se odigravaju tri puta brže nego što je to normalno. Ukupan rezultat daje da će događaje koji na raketi ukupno traju šest godina blizanac na Zemlji posmatrati deset godina, odnosno u proseku će vreme na raketi proticati sporije nego na Zemlji.

Iz ovoga se vidi zbog čega fizička situacija nije simetrična za oba blizanca i zašto je ukupno vreme putovanja različito za svakog od njih. Blizanac sa rakete preusmerava svoju brzinu na polovini svog putovanja i počinje da zapaža događaje na Zemlji ubrzanim tempom odmah nakon toga, dok blizanac na Zemlji mora da čeka još četiri godine da svetlosni talasi događaja okretanja rakete stignu do njega pre nego što počne da prima ubrzanim tempom događaje sa rakete. Jednostavnije rečeno, zemaljski blizanac prima svetlosne talase događaja na raketi sporijim tempom ali duže vreme nego blizanac u raketi one sa Zemlje. Efekat ove asimetrije je da zemaljski blizanac posmatra manje događaja koji se dešavaju na raketi, nego što blizanac na raketi posmatra događaja na Zemlji za vreme celog putovanja.

Moglo bi izgledati da su zaključci koji proizilaze iz ovakvog putovanja u suprotnosti sa predviđanjem STR da je brzina svetlosti maksimalna brzina. Kako je putovanje dugo osam svetlosnih godina, a raketa ga prelazi za šest godina putovanja zabeleženim na raketi, prostim izračunavanjem brzine (deljenje pređenog puta sa utrošenim vremenom) dobija se da brzina kojom se raketa kretala za jednu trećinu veća od brzine svetlosti. U čemu je ovde greška?
Razlog zbog čega se javlja “prekoračenje” brzine svetlosti je to što raketa stvari ne prelazi rastojanje od osam svetlosnih godina. Kao posledica brzine rakete rastojanje do zvezde biće skraćeno za blizanca u raketi usled Ficdžerald-Lorencove kontrakcije, pa na osnovu toga korišćenjem jednačine (1) i numeričkih vrednosti iz ovog primera dobija se skraćeno rastojanje od 4,8 svetlosnih godina za povratno putovanje. Deljenjem tog iznosa sa vremenom provedenim u putu, tj. sa šest godina, lako se utvrđuje da prosečna brzina stvarno iznosi 4/5 brzine svetlosti.

Series NavigationVreme u specijalnoj teoriji relativnostiParadoks Blizanaca (2. deo)
One Response
  1. avatar 21. 07. 2014.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: