Skola PMN - poster v03

Škola prirodno-matematičkih nauka (ŠPMN)

U subotu, 5. oktobra 2024. godine sa radom počinje druga Škola prirodno-matematičkih nauka. Prva ŠPMN sprovedena je prošle školske godine sa velikim uspehom, a među njima je svakako bio i ...
Acasia-Meteors-2

Pripremite želje, Perseidi ponovo dolaze

Svake vedre noći, ako odete negde daleko od svetla grada i ako ste dovoljno strpljivi možete da vidite nekoliko meteora svakog sata.Međutim, svake godine oko 10. avgusta "zvezde padalice" postaju ...
Perseidi na Vidojevici (horizontalno)

Posmatramo Perseide na Vidojevici

Pozivamo vas na zvezdani događaj „Posmatramo Perseide na Vidojevici“, koji će se održati u nedelju, 11. avgusta, od 20 časova do ponoći, na lokaciji Beli Kamen, gde ćemo zajedno posmatrati ...
posterMMMSinergija

Maj mesec matematike - Sinergija

Kao i prethodnih osam godina, i ovog maja, na Prirodno-matematičkom fakultetu u Nišu, održava se manifestacija „Maj mesec matematike“. Ove godine tema je spoj matematike sa drugim naukama - SINERGIJA. ...
CERN-MC2024

CERN Masterclass 2024

U periodu od 15. februara do 27. marta 2024. godine pod pokroviteljstvom CERN-a i grupe IPPOG (International Particle Physics Outreach Group) održaće se 20. međunarodni program “MasterClasses – Hands on Particle Physics” (MC2024). U ...
skolaPMN

Otvaranje Škole prirodno-matematičkih nauka u Nišu

U subotu, 18. novembra na Prirodno-matematičkom fakultetu u Nišu počinje Škola prirodno-matematičkih nauka. Ovu školu namenjenu učenicima 7. i 8. razreda osnovne i svih razreda srednje škole ove godine po ...
biosignatureNajava

Astrobiologija i astronomsko posmatranje povodom Noći istraživača

Povodom predstojeće Evropske noći istraživača AD "Alfa" i Departman za fiziku PMF-a u Nišu organizuju naučno-popularno predavanje (četvrtak, 28. septembar) i teleskopsko posmatranje (petak, 29. septembar).Jedno od kanonskih pitanja astrobiologije ...
Perseid Meteors over Mount Shasta

Letnji vatromet u epizodi Perseidi 2023

Svake vedre noći, ako odete negde daleko od svetla grada i ako ste dovoljno strpljivi možete da vidite nekoliko meteora svakog sata. Međutim, svake godine u vreme Nisville Jazz festivala, ...
Unearthed-SuperMoon-1611-1-web

Dva (plava) Supermeseca u avgustu 2023. godine

Ako sutra uveče pogledate u nebo videćete Supermesec, najveći Mesec u mnogo godina! Bićete svedok spektakularnog prizora kakav se retko viđa na nebu, pun Mesec će biti ogroman, najveći koji ...
kvark-kvazar

Od kvarka do kvazara - uz mnogo astrofizike i malo matematike u Maju mesecu matematike u Nišu

Obeležavanje Maja meseca matematike, u organizaciji Departmana za matematiku PMF-a u Nišu nastavlja se u petak, 26. maja, od 17:00 h, u amfiteatru Prirodno-matematičkog fakulteta u Nišu sa tri nova ...
Slika dana: Mesec u polusenci [18.10.2013]

Pomračenje Meseca polusenkom (5. maj 2023)

Za ovaj petak (5. maj) nebeska mehanika “pripremila” je pomračenje Meseca, Međutim, ovo pomračenje značajno će se razlikovati od onih atraktivnih delimičnih i totalnih pomračenja Meseca koja smo posmatrali tokom ...
slika2

Нобелова награда за физику 2022. године

Аутор: проф. др Мирољуб Дугић(Институт за физику, Природно-математички факултет, Универзитет у Крагујевцу)Нобелову награду за физику за 2022. годину поделила су тројица експерименталних физичара за област заснивања квантне механике, Ален Аспе ...
CometZtf_Hernandez_960

Kometa C/2022 E3 (ZTF)

Ako ste tokom prethodnih par meseci bili totalno izolovani od vesti ili toliko ne volite vesti iz astronomije da čim ih čujete menjate sajt/TV kanal/radio stanicu onda verovatno niste čuli ...
solar-eclipse

Delimično pomračenje Sunca (25. oktobar 2022)

Još tačno deset dana deli nas do predstojećeg delimičnog pomračenja Sunca koje će biti vidljivo iz Srbije. Pomračenje Sunca za mnoge je verovatno najznačajnija i najazanimljivija pojava koju možemo da ...
kosmicke-litice

Džejms Veb Teleskop - prve fotografije

Odavno je "Svet nauke" otišao u zimski... letnji... višegodišnji san i teško ga je probuditi ali neki događaji u nauci su toliko značajni da mogu da predstavljaju prekretnicu u budućem ...
800px-Benjamin_Franklin_1767

Bendžamin Frenklin (1706 - 1790)

Na današnji dan, 17. januara, 1706. godine, u Bostonu (Masačusets, SAD), rođen je Benžamin Frenklin (Benjamin Franklin), američki naučnik i političar, borac za ljudska prava, učesnik u Američkom ratu za ...
1280px-ALH84001_structures

Meteorit sa Marsa ALH84001

Najpoznatiji meteorit sa Marsa otkriven je 27. decembra 1984. godine na Antarktiku.Ovaj meteorit nosi oznaku ALH84001 i otkriven je u oblasti Allan Hills, grupi brda na Antarktiku. Pronašao ga tim ...
Slika dana: Galileo Galilej i teleskop [25.08.2014]

Prvi teleskop

Galileo Galilej i prvi teleskop (izvor: Physics Today)Na današnji dan 1609. godine Galileo Galilej predstavio je "prvi teleskop" Leonardu Donatu, vladaru Venecije, i njegovim savetnicima. Galileo Galilej napravio je ovaj ...
apolo11-pre-poletanja

52 godine od Malog koraka za čoveka - Apolo 11

Na današnji dan, pre tačno 52 godine, 20. jula 1969. godine čovek je prvi sleteo na površinu drugog nebeskog tela.Oko šest sati pre “malog koraka za čoveka, ali velikog za čovečanstvo” dvočlana posada ...
yuri_gagarin_01

Juri Gagarin - 60 godina od prvog leta u svemir

Pre tačno 60 godina, 12. aprila 1961. godine oko 9 sati po Moskovskom vremenu, raketa Vostok 1 poletela je ka svemiru. U raketi je sedeo Juri Gagarin koji je nekoliko minuta kasnije postao prvi čovek u ...
ada_lovelace_portrait

Rođendan Ejde King Lavlejs - prve programerke

Samo dan kasnije ali i mnogo godina pre rođenja Grejs Hoper, na današnji dan, 10. decembra 1815. godine rođena je Ejda King Lavlejs (Ada Lovelace), ćerka čuvenog engleskog pesnika Lorda Bajrona, ...
Grace-Hopper

Grejs Hoper: do ratne mornarice do kompajlera i buba

Kada govorimo o IT sektoru, matematici i vojsci verovatno nam prva asocijacija budu muškarci. Međutim, tu sliku menja žena rođena na današnji dan, 9. decembra 1906. godine u Njujorku. Doktorirala ...
kupola-atomske-bombe

Dan kada je eksplodirala prva atomska bomba

Pre tačno 75 godine, tačnije 6. avgusta 1945. američki avion bombarder bacio je jednu jedinu bombu na japanski grad. Taj grad bila je Hirošima, a posledice te bombe pamtiće generacije ...
530px-palebluedot

30 godina Plave tačke u beskraju i Porodičnog portreta

Šta mislite šta je ovo na slici? Ne znate? …  Ova svetla tačka je Zemlja, naša planeta. Generacije ljudi, hiljadama godina žive na toj svetloj tački, sve što ste ikada… nalazi se na njoj…A fotografije je ...
planeta-vlasina

Planeta Vlasina oko zvezde Morave

Povodom jubileja koji ove godine obeležava Međunarodna astronomska unija (MAU), 100 godina od svog osnivanja, sve zemlje članice MAU su imale jedinstvenu priliku da kumuju imenu jednoj od novootkrivenih planeta ...

Ajnstajnova teorija gravitacije

Prvi zadatak i prva provera Opšte teorije relativnosti bilo je tačno opisivanje orbita planeta oko Sunca. Mnogo godina pre Ajnštajna Njutnova teorija gravitacije je dobro opisala orbite planeta. Vremenom tehnika posmatranja i instrumenti su postajali sve precizniji i videlo se da rezultati za kretanje planeta koje daje klasična teorija ne odgovaraju u potpunosti pravom stanju stvari u Sunčevom sistemu. Bilo je poznato da na kretanje planeta oko Sunca utiče jedino sila gravitacije, a kako je Opšta teorija teorija gravitacije ovo je bio prvi test za njenu proveru.

Rezultati koji su dobijeni primenom Ajnštajnove teorije su bili približno isti kao i rezultati koje je dala klasična teorija, ali bilo postojala je i jedna velika razlika. Obe ove teorije predviđaju da se planete oko Sunca kreću po eliptičnim putanjama, ali za razliku od klasične teorije OTR pokazuje da te elipse nisu stacionarne već da one rotiraju oko Sunca. Posmatrano u dugom vremenskom intervalu može se videti da planete, na svom putovanju oko Sunca, opisuju putanju oblika rozete.

Sada je trebalo proveriti rezultate koje je dala OTR. Brzina kojom elipse rotiraju oko Sunca je vrlo mala, gotovo nemerljiva. Da bi se proverila ova teorija bilo je neophodno vršiti vrlo precizna merenja i to na orbiti planete koja najbrže rotira. Teorija je pokazala da rotacija orbite treba da bude najveća za planete sa najvećom orbitalnom brzinom, ali bilo je neophodno posmatrati i planetu sa dovoljno izduženom orbitom kako bi rotacija orbite bila vidljiva (orbite većine planeta su skoro kružne). Srećom, u našem planetarnom sistemu postoji jedna planeta koja je ispunjavala oba uslova. To je Merkur, za koju je opisivanje orbite već zadavalo puno problema astronomima. Mnogo godina ranije bilo je poznato da orbita ove male planete rotira za 574 lučnih sekundi svakih 100 godina. Astronomi su uspeli da objasne postojanje rotacije od 531 sekunde kao posledicu gravitacionog uticaja ostalih planeta. Preostalo je još 43 lučne sekunde koje je bilo nemoguće objasniti. Bilo je pokušaja da se ova razlika pripiše postojanju jedne nove, neotkrivene planete, ali svi pokušaji da se ta planeta nađe bili su bezuspešni.

rozeta-merkur.gif

Sve do objavljivanja OTR uzrok ovakvog ponašanja Merkurove orbite bio je misterija, ali kada su astronomi primenili ovu teoriju za opisivanje putanje Merkura dobijena je upravo vrednost koju su davala i posmatranja. Bio je ovo prvi trijumf Opšte teorije relativnosti.

Značenje zakrivljenog prostor-vremena

Iz gore navedenih rezultata može se pogrešno zaključiti da razlika između klasične teorije i Opšte teorije relativnosti nije velika. Ipak, razlika između ovih teorija je ogromna, suštinska. Razlika ne leži u tome što su brojni rezultati različiti već je njihova razlika u načinu na koji opisuju sam pojam gravitacije. Njutnova teorija gravitaciju shvata kao jednu sasvim običnu silu, ali Ajnštaj potpuno odbacuje ovo tvrđenje. U Opštoj teoriji gravitacija više nije sila već je ona osobina samog prostor-vremena. Gravitacija je rezultat toga što, prema ovoj teoriji, prostor-vreme nije ravno već je zakrivljeno pod uticajem raspodela masa i energija u njemu. Negde daleko u vasioni, daleko od svih masivnih objekata prostor i vreme su savršeno ravni, ali približavanjem nekom masivnom objektu ulazi se u oblasti sve veće i veće zakrivljenosti prostor-vremena. Jačina gravitacionog polja je zapravo mera zakrivljenosti prostor-vremena.

U ovom novom, na ovaj način definisanom, prostor-vremenu planete se zapravo kreću po pravim putanjama, a njihove putanje nama izgledaju zakrivljeno zbog oblika samog prostora. Putanje kojima se tela kreću u ovom zakrivljenom prostor-vremenu nazivaju se geodezijske linije, a te linije predstavljaju najkraće rastojanje između dve proizvoljne tačke. Da bi smo bolje razumeli šta ovo zapravo znači posmatrajmo površinu Zemlje kao jedan zakrivljeni dvodimenzionalni prostor. Ako bi probali da na globusu povučemo najkraću liniju između dva grada primetili bi da ta linija nije prava već je kriva, ali kada bi zatim seli u avion i krenuli u pravcu koji smo nacrtali nama bi izgledalo da putujemo po pravoj liniji, i kada ne bi smo znali da je Zemlja okrugla teško bi neko mogao da nas ubedi da ne putujemo po pravoj već po krivoj liniji. Slična ovakva situacija je i sa četvorodimenzionalnim prostor-vremenom.

Jednostavno rečeno OTR nam pokazuje da materija saopštava prostor-vremenu kako da se savije a savijeno prostor-vreme saopštava materiji kako da se ponaša.

Bila je ovo još jedna čudna i, na prvi pogled, totalno neprihvatljiva ideja koju nam je dala Ajnštajnova teorija relativnosti. Retko ko je mogao da poveruje u ovo, i Ajnštajn je to sasvim dobro znao pa je odmah predložio i način da se njegova tvrdnja proveri i na taj način sa sigurnošću potvrdi da mi živimo u zakrivljenom četvorodimenzionalnom prostor-vremenu.

Eksperiment koji je Ajnštajn predložio zasnivao se na tome da je on trebalo da pokaže da svetlosni snom koji dolazi sa neke udaljene zvezde skreće sa početnog pravca dok prolazi pored Sunca.

 zakrivlenost-zvezde.gif

Da bi izvršili ovo merenje astronomi su praktično trebali da izmere koju težinu ima svetlosni snop na Suncu. Kao i svi drugi predmeti tako i svetlost ima neku težinu. Svetlosni snop sastoji se od mnoštva čestica, tzv. fotona koji imaju izvesnu masu kada se kreću. Svima je poznato kako je moguće izmeriti masu bilo kog tela iz svakodnevnog života koje se kreće – pokupimo ga kada padne i stavimo na vagu. Ali sa fotonima nije tako lako. Ne samo da je nemoguće uhvatiti fotone i staviti ih na vagu već fotoni uopšte i nemaju masu kada miruju, oni postoje samo kada se kreću. Ovo merenje je, teorijski gledano, vrlo jednostavno – ako gravitaciono polje utiče na fotone putanja svetlosnog snopa biće zakrivljena što je lako utvrditi ako je zakrivljenost dovoljno velika, ali ako gravitaciono polje ne utiče na fotone oni će nastaviti da putuju bez skretanja, što je opet lako detektovati. Na ovaj način može se odrediti pravac prostiranja svetlosti, a samim tim i geometrija prostora. Da bi se ovo merenje izvršilo neophodno je posmatrati skretanje svetlosnog snopa koji prolazi pored nekog masivnog tela jake gravitacije, a najbolji kandidat, kojim raspolažemo, za ovakvo merenje je Sunce.
Svetlosni snop koji se posmatra mora da dolazi sa neke udaljene zvezde. Onda kada između Zemlje i zvezde nema nikakvih masivnih objekata i gravitacionog polja snop svetlosti će se do nas kretati pravolinijski. Pretpostavimo da, posle nekog vremena, krećući se oko Sunca, Zemlja dođe u takav položaj da svetlosni snop sa zvezde skoro dotiče površinu Sunca.

Ovde se opet javlja veliki problem jer je, zbog ogromnog sjaja Sunca, nemoguće videti bilo koji zvezdu iza njega. Da bi rešio ovaj problem Ajnštajn je predložio da se merenje vrši tokom totalnog pomračenja Sunca.
Postupak merenja se sastojao u tome da je zvezde prvo trebalo fotografisati kada tu nema Sunca a zatim se isti postupak ponavlja za vreme totalnog pomračenja. Na ovim novim fotografijama, ako je OTR tačna, zvezde u blizini Sunca bi trebale da budu pomerene u odnosu na položaj na prvoj fotografiji. Ajnštajn je izračunao da ovo pomeranje prividnog položaja zvezde treba da bude 1,74 lučne sekunde.

Najpovoljnije pomračenje Sunca za ova merenja desilo se 29. maja 1919. godine. Posebna pogodnost ovog pomračenja bila je u tome što su krajem maja Zemlja i Sunce poravnati sa mnoštvom sjajnih zvezda pa je lako izabrati neku od njih za merenja. Za ovu izuzetnu priliku pripremljene su dve britanske ekspedicije, jedu je vodio A. C. Kromlin i ona je otputovala u severni Brazil dok je druga, pod vođstvom A. S. Edingtona putovala na jedno ostrvo u Gvinejskom zalivu. Za vreme totalnog pomračenja napravljen je ogroman broj fotografija koje su zatim, nakon povratka u Britaniju, detaljno analizirane.

Na fotografijama prve ekspedicije pomeranje zvezda iznosilo je 1,98 lučnih sekundi a na onima koje su snimili članovi druge ekspedicije razlika je bila 1,6 lučnih sekundi. Ovako dobro slaganje izmerenih vrednosti sa rezultatima eksperimenta dobilo je odlična potvrda tačnosti Opšte teorije.

Tokom šest decenija sve preciznijeg ponavljanja ovog i njemu sličnih eksperimenata nisu pronađene eksperimentalne činjenice koje bi osporile tačnost OTR. Ogroman broj eksperimentalnih provera je potvrdio da je Opšta relativnost daleko najpotpunija, najtačnija, najelegantnija i najpreciznija teorija gravitacije koju je čovečanstvo ikada imalo.

Series NavigationOpsta teorija relativnostiGravitacija i vreme
6 Comments
  1. 27.12.2010.
  2. 27.12.2010.
  3. 31.12.2010.
  4. 31.12.2010.
  5. 31.12.2010.
  6. 27.11.2016.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.