black-hole

O crnim rupama i medicinskoj fizici u četvrtak na PMF-u u Nišu

U četvrtak 31. oktobra od 20 h nastavlja se serija naučno-popularnih predavanja u organizaciji “Niš Young Minds Section” i Departmana za fiziku PMF-a.Ovog četvrtka Young Minds sekcija iz Niša pripremila je dva zanimljiva predavanja iz astrofizike i ...
enjoyphysics

Prvo predavanje u organizaciji Niš Young Minds Section

U četvrtak 24. oktobra u amfiteatru Prirodno-matematičkog fakulteta u Nišu sa početkom u 20 časova, biće održano predavanje prof. dr Gorana Đorđevića sa Departmana za fiziku na temu:Od Saveza komunista do „Mladih umova”Kosmologija i ...
safer-internet

Svetska nedelja svemira i Međunarodna noć posmatranja Meseca u Nišu

Povodom Svetske nedelje svemira i Međunarodne noći posmatranja Meseca od subote, 5. oktobra do četvrtka 10. oktobra Astronomsko društvo “Alfa” i Departman za fiziku Prirodno-matematičkog fakulteta u Nišu organizuju seriju ...
apolo11-pre-poletanja

Apolo 11: 50 godina kasnije

Na današnji dan, pre tačno 50 godina, tj. 16. jula 1969. godine u 9:32h po lokalnom vremenu (13:32 po Griniču), iz Kennedy Space Center-a lansirana je raketa nosač Saturn V. Na vrhu te ...
sunbathing

Sunčanje i/ili zdravlje? Izaberite sami!

Sunce, taj žuti disk koji svakoga dana putuje po plavom nebeskom svodu, je samo jedna od nekoliko milijardi zvezda rasutih svuda po praznom prostoru svemira. Ono je jedna sasvim obična ...
davinci

Leonardo da Vinči: Umetnik. Naučnik. Pronalazač.

Pišu: Jovana Savić i Jovana Stanimirović“Onaj ko isključivo ceni praksu bez teorije je poput moreplovca koji se ukrca na brod bez kormila i kompasa, ne znajući kuda se plovi.” - ...

Kako se prenosi zemljotres kroz tlo

Prilikom registrovanja potresa, postavlja se pitanje kako je taj seizmički talas došao do nas. Odakle je došao? Da li je potres bio blizu nas ili je to samo refleksija nekog daljeg potresa. Vrlo često se čuje da je slabiji potres samo upozorenje pred jači.

Znamo da je zemljotres talasno kretanje zemlje usled interakcije tektonskih ploča. Ti talasi se kroz Zemljinu koru prostiru po zakonima fizike, te ih je lako objasniti. Pošto unutrašnjost naše planete nije homogeno rasporedjena, očekivano je da se seizmički talasi neće kretati pravolinijski. Pravac i brzina njihovog kretanja se može proračunati u zavisnosti od toga gde je bio potres i koliko je vremena prošlo do registrovanja tog potresa na različitim seizmološkim stanicama. Još jedna stvar koja utiče na vrstu zemljotresa je dubina nastanaka.

Do početka 20-og veka, građa naše planete je bila nerazrešiva misterija. Jedino na osnovu čega se moglo zaključivati o tome šta se nalazi u dubini Zemlje, bili su vulkani i rudničke jame. Međutim, zahvaljujući brojnim tehničkim pronalascima s kraja 19-og veka, postalo je moguće “zaviriti” u dubinu Zemlje do njenog samog središta. Jedan od ključnih izuma koji su omogućili proučavanje Zemljinih dubina, bio je seizmograf. Zaključci na koje su uputili rezultati dobijeni proučavanjem seizmičkih talasa, bili su svakako krajnje neočekivani. Naime, došlo se do zaključka da Zemlja ima više jasno razgraničenih “slojeva”. Prelazi između tih “slojeva” su manje ili više jasni i oštri i nazivamo ih diskontinuiteti.

Ako Zemlju posmatramo kao celinu (njen čvrsti, tečni i gasoviti deo), najjasniji diskontinuitet je upravo onaj na kojem mi živimo – diskontinuitet između litosfere i atmosfere.

Metoda kojom se određuje epicentar zemljotresa je sledeći. S obzirom na to da jedna seizmološka stanica nije u mogućnosti sa velikom preciznošću odrediti mesto nastanka, one medjusobno upoređuju podatke i na taj način određuju mesto potresa.

Postoji razlika u brzini kretanja P i S talasa. P talasi su elastični seizmički talasi. Nesto poput zvučnih talasa. Takođe P talas ima karakteristiku da za razliku od S talasa prolazi kroz tečnosti, sto je osnovni uslov za prenošenje P talasa kroz Zemljino jezgro. Samim tim različite seizmološke stanice registruju različite magnitude i različite talase. Slika gore pokazuje kako se određuje mesto epicentra zemljotresa presekom tri magnitude ragistrovane na tri posebne seizmološke stanice. Za snagu zemljotresa u epicentru, usvaja se najjača amplituda registrovana na nekom seizmogramu.

U homogenim i izotropnim materijama P talasi se kreću najčesće uzduzno. Čestice materije koje prenose P talase vibriraju uzduž ili paralelno kretanju talasa.

Slika 1

Slika 2

Najčešće brzine P talasa kod zemljotesa su od 5 do 8 km/s. Brzina varira od toga kroz kakvu materiju se talas prostire. Pa na primer brzin može biti ispod 6 km/s kroz litosfernu ploču, pa čak to 13 km/s kroz jezgro Zemlje.

Druga vrsta talasa su S talasi ili talasi smicanja. Po nekad se mogu nazvati elastični talasi zbog prirode svog kretanja. S talas je jedan od dva glavna tipa elastičnih talasa. Tako su nazvani jer se kreću kroz materiju, za razliku od površinskih talasa. S talas je poprečni talas. Njegovo kretanje je normalno na pravac prostiranja talasa. S talasi se kreću kao talasi na uzetu koje je zatreseno, za razliku od P talasa koji se takoreći šunjaju. S talas pravi elstične deformacije tako da pravi efekat smicanja na objekte koji se nadju pogodjeni ovam talasom

Slika 3

Slika 3

Na sledećim slikama se vidi delovanje P i S talasa na tlo.

 

Sledeći problem koji se javlja prilikom određivanja snage zemljotresa je upravo intezitet njegove snage. Što je zemljotres jači, to će se njegova magnituda teže odrediti. Zemljotesi slabijih inteziteta su tačnije izmereni nego jači zemljotresi. Sto je jači zemljotes, imamo i veću grešku prilikom određivanja istog. Kod izuzetno jakih potesa (kao skorašnjeg u Japanu) imamo znatno vise elemenata koji utiču na sam potres, a to su:

  • nelinearno povećanje toplote tla usled trenja
  • nastanak slobodnih oscilacija usled velikih potresa
  • uticaj na rotaciju Zemlje usled preraspodele mase i energije u njenoj unutrašnjosti i
  • trajnih deformacija

Pored tih problema, imamo i slučaj promene brzine i refleksije seizmičkih talasa usled prolaska kroz slojeve različite gustine. Na prvoj slici vidimo kako bi se kretali talasi da je slo homogeno, ali posto nije, imamo slučajeve refleksije na par narednih slika gde na poslednjoj se vidi koliko odgovora na potres imamo od samo jednog potresa.

Kretanje seizmičkih talasa i njihov uticaj na neku oblast, to jest analiza kretanja talasa i rasipanja energije nastale u rasedu se zove fokalni mehanizam.

Fokalni mehanizam bi bio grafička prezentacija neelastične deformacije jedne oblasi izazvane prostiranjem seizmičkih talasa.

Može se slobodno reći da je fokalni mehanizam rezultat analize prostiranja P talasa potresa čiji su podaci skupljeni iz mreže seizmoloških stanica (najmanje 10 ravnomerno raspoređene oko epicentra).

Energija potresa se opisuje kao dupli par ili double couple modelom. Ovaj model je matematički opisan u tri dimenzije simetričnim tenzorom od devet komponenti koji se naziva moment tenzora. Ovaj tenzor je dat orijentacijom i intezitetom 3 međusobno normalne ose: P (kompresija), T(tenzija), N( neutralna osa). Orijentacija i intezitet ovih osa se utvrdi posadicima koje prikupe seizmološke stanice u toku jednog potresa.

Tenzoti su geometrijski objeki koji opisuju linearni odnos između vektora, skalara i drugih tenzora.

Naime, svaki od fokalnih mehanizama ima dva primera prestavljena takozvanim velikim krigovima na donjoj polulopti stereografke projekcije. Samo jedan od konjugovanog para raseda je aktivan u toku potresa. Ove ravni su pod 90 stepeni u odnosu jendna na drugu. Glavne ose tenzora su bisektrise trougla koji zaklapaju ove ravni raseda. Polje koje je određeno na konjugovanom paru raseda i u kojem se nalazi osa maksimalne kompresije, dok je polje u kome se nalazi osa maksimalne tenzije polje tenzije. Polje kompresije je belo, a polje tenzije crno. Prilikom prolaska seizmičkih talasa kroz stenu dešava se to da u polje kompresije čestice teže ka fokusu potresa (centru stereografkse projekcije), a u tenzionom polju se udaljavaju od njega. Ovo pravilo se kotisti za određivanje karakteristika krevanja talasa po rasedu.

Postoji nekoliko metoda kako doći do momenta tenzora ili orijentacije njegove glavne tri ose. Jedan od metoda je grafička metoda. Ona nije primenljiva za sve tipove zemljotresa. Ali je dobra za razumevanje kako se podaci sa seizmograma mogu koristiti u cilju dobijanja dugih podataka kao što su fokalni mehanizmi.

Imamo tačno vreme zemljotersa i razdaljine svake stanice od epicentra (sto se vidi na vec pomenutoj slici). Dalje pomoću standarnih modela brzine prostiranja seizmičkih talasa kroz zemlju izračunamo teorjsko vreme pristizanja prvih p talasa do svake seizmološke stanice. Onda se gleda karakteristika p talasa u tačno određenom vremenskom ternutku (t). Onda P talasi u tom trenutku (t) mogu biti u pozitivnom ili negativnom delu na seizmogramu ili čak i ne moraju biti zabelezeni.

Svaki od ovih podataka (svaka stanica) ima još dva bitna podatka: azimut stanice u odnosu na fokus potresa i take off angle, odnosno ugao koji zaklapa imaginaran pravac stanica-fokus i vertikalna ravan. Prvi P talas u pozitivnom piku ima kompresioni karakter, u negativnom ima tenzioni karakter, a ako nema signala u trenutnu t radi se o neutralnim ravnima ili je signal bio slab. Tako svaki podatak možemo prestaviti na projekciju donje polulopte jer znamo njegovu orijentaciju, kompresiju i tenziju.

Tako dobijamo niz podataka čijom interpolacijom mozemo dobiti fokalni mehanizam jednog zemljotresa. Što imamo vise podataka to će fokalni mehanizam biti tačniji.

6 Comments
  1. avatar 27. 05. 2011.
  2. avatar 27. 05. 2011.
  3. avatar 14. 06. 2011.
  4. avatar 14. 06. 2011.
  5. avatar 16. 06. 2011.
  6. avatar 16. 06. 2011.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: