davinci

Leonardo da Vinči: Umetnik. Naučnik. Pronalazač.

Pišu: Jovana Savić i Jovana Stanimirović“Onaj ko isključivo ceni praksu bez teorije je poput moreplovca koji se ukrca na brod bez kormila i kompasa, ne znajući kuda se plovi.” - ...
crna-rupa-prva

Prva fotografija crne rupe!

Već nekoliko decenija, a može se reći i vekova, crne rupe privlače ogromnu pažnju kako naučnika tako i javnosti, kroz popularne tekstove, različite ideje i SF romane i (visokobudžetne) filmove.Do ...
dositej-obradovic

Dositej Obradović – srpski prosvetitelj i reformator

„Knjige, braćo moja, knjige, a ne zvona i praporce!“Dositej ObradovićNa današnji dan 28. marta 1811. godine u Beogradu je umro najveći srpski prosvetitelj i reformator – Dositej Obradović. Sahranjen je ...
proposal

CERN – mesto gde je nastao “Internet”

Prvi World Wide Web Logo (Autor: Robert Cailliau)Prethodnih nekoliko godina imali smo prilike da često slušamo o CERN-u, LHC-u - i "najvećem eksperimentu čovečanstva", ulasku Srbije u punopravno članstvo, akceleratoru, ...
using-a-smartphone-accelerometer

Konkurs Mobilni telefon u fizičkom eksperimentu

Digitalna tehnologija i mediji, zasnovani na upotrebi interneta i mobilnih telefona predstavljaju najpopularniji način komuniciranja u savremenom svetu. Mobilni telefoni su naša svakodnevica, a novi modeli se po svojim mogućnostima ...
odeljenje-za-fiziku-novine

Postani i ti deo nove generacije specijalnog Odeljenja za fiziku u Nišu

Ove godine u Odeljenje za učenike sa posebnim sposobnostima za fizikuGimnazije “Svetozar Marković” u Nišu stiže nova, 17. generacija učenika.Kao i prethodnih godina nastavnici i saradnici Departmana za fiziku PMF-a, u saradnji sa ...

Matematika doba Đaina

Gledano kroz istoriju matematike Đainizam predstavlja prelazno doba između Veda i Klasičnog perioda i traje približno od 400. godine p.n.e do 200. godine n.e. Najznačajnija obeležija ovog vremena su oslobađanje od religijskih uticaja, fascinacije ogromnim brojevima i beskonačnošću. Đainisti veruju da svet nikad nije počeo i nikad neće da se završi , a duše na kraju postaju prosvetljene i napuštaju centar zemlje ove karmičke iluzije mora da postoji beskonačnost duša. Takođe u njihovoj kosmologiji se dolazi do broja 2588 koji predstavlja ukupni period vremena , koji se sreće samo u njohovoj kulturi.

Ovo je dovelo i do klasifikacije svih brojeva na prebrojive , neprebrojive i beskonačne. Zatim odredili su pet tipova beskonačnosti: beskonačnost u jednom pravcu, beskonačnost u dva pravca, beskonačnost u oblasti, beskonačnost svuda i stalna (perpetualna) beskonačnost.

Matematičari ovoga doba otkrili su i notaciju prostih stepena brojeva kao što su kvadrati i kubovi koja im je omogućili ddefinišu jednostavne algebarske jednačine. Oni su bili i prvi koji su koristili termin za nulu (shunya – na sanskritu poništi).

Doprinosi matematici u ovo vreme su bili : aritmetičke operacije, geometrija , operacije sa razlomcima , proste jednačine , jednačine trećeg i četvrtog stepena , formula za π i operacije sa logaritmima.

Najznačajniji matematičar ovog vremena bio je Pingala.

Pingala je čuveni indijski matematičar i pesnik, a najpoznatije delo mu je Chandas Sutra. Ovo delo ima osam glava i predstavlja sanskritsku raspravu o prozodiji. Napisano je između 2 i 5 veka p.n.e , danas je poznato samo u fragmentima a o njemu se još saznaje i od indijskog matematičara 10. veka Halajude koji je dao prozni komentar dela.

Kao matematičar Pingala je naišao na paskalov trougao i binomne koeficijente kao probleme koje je definisao ali o kojima nije imao predznanje kao i na fibonačijeve brojeve.Paskalov trougao je došao kao posledica interesovanja za kominacije i permutacije za koje daju i vrlo tačne formule :

_nC_1 = n, \hspace{10px} _nC_2 = \frac {n(n - 1)} {1 \cdot 2}, \hspace{10px} _nC_3 = \frac {n(n - 1)(n - 2)} {1 \cdot 2 \cdot3}

_nP_1 = n, \hspace{10px} _nP_2 = n(n - 1), \hspace{10px} _nP_3 = n(n - 1)(n - 2)

Kao i za sam paskalov trougao(inače ova formula je jedostavnija od one koju je dao Paskal):

_{n+1}C_r = _nC_r + _nC_{r-1}

U komemtaru koji je dao Halajuda koji ovo zove i Meru-prastāra ( na sanskritu put do planine Meru ) kaže se :

„Nacrtajte kvadrat. Počevši od sredine s donje ivice kvadrata nacrtajte dva slična kvadrata ispod njega, i još tri kvadrata ispod njih. Pri obeležavanju stavite 1 u gornji kvadrat i dva ispod njega. U treću liniju (red) stavite 1 u kvadrate na kraju a u onaj srednji sumu brojeva kvadrata iznad njega . U četvrti red stavite 1 u krajnje kvadrate, a u one srednje sumu brojeva kvadrata iznad njih. Nastavite ovako. Od ovih linija druga daje kombinaciju sa jednim slogom , a treća kombinaciju sa dva sloga….“

U tekstu se pokazuje i svest o kombinatornom identitetu :

\dbinom{n}{0} + \dbinom{n}{1} + \dbinom{n}{0} + \ldots + \dbinom{n}{n-1} + \dbinom{n}{m} = 2^n

Do fibonačijevih brojeva (ili niza) se došlo zahvaljujući njihovoj prozodiji , odnoso oni indijci su imali dugačke i kratke slogove. Dugački su imali dužinu dva, a kratki jedan. To znači da se svaki obrazac dužine n može predstaviti dodavanjem kratkog sloga obrascu dužine n-1 ili dodavanjem dugačkog sloga obrascu dužine n-2.

Popločavanje kvadratima čije su dužine fibonačijevi brojevi (0 ,1,1,2,3,5,8,13…)

Zlatna spirala

Series NavigationReligija i filozofijaBramaguptaKlasični period

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: