cezar-milankovic

Srpska Nova godina?

Stigao je još jedan 13. januar i “nova” godina. Ali, da li je ova Nova godina "Srpska" ili je ona možda Cezarova saznaćete u tekstu koji sledi.Od nastanka civilizacije ljudi su tražili sve ...
Muhammad-Rayhan-PLE-2016_1474060079

Pomračenje Meseca - 10. januar 2020

Za večeras (10. januar) nebeska mehanika “pripremila” je pomračenje Meseca, Međutim, ovo pomračenje značajno će se razlikovati od onih atraktivnih delimičnih i totalnih pomračenja Meseca koja smo posmatrali tokom prethodnih ...
nikola-tesla-munje-kolorado-springs

Nikola Tesla - čovek koji je pronašao XX vek

U Njujorku je na današnji dan, na Božić, 1943. godine umro jedan od najvećih istraživača koji je ikada živeo - Nikola Tesla, "čovek koji je izmislio XX vek", kako ga ...
newdecade_hdv

Početak nove decenije - učimo da brojimo & računamo vreme

Prvi put objavljeno januara 2010. godineSvakih deset godina, tj. svaki put kad čekamo godinu koja završava nulom krenu zanimljive priče i rasprave o tome da li je to godina kojom ...
planeta-vlasina

Planeta Vlasina oko zvezde Morave

Povodom jubileja koji ove godine obeležava Međunarodna astronomska unija (MAU), 100 godina od svog osnivanja, sve zemlje članice MAU su imale jedinstvenu priliku da kumuju imenu jednoj od novootkrivenih planeta ...
Konkurs-small

Konkurs za radove učenika

Niš Young Minds Section organizuje konkurs za sve zainteresovane učenike osnovnih i srednjih škola na teritoriji Republike Srbije u okviru projekta „Izvan redova i van okvira: Seminar za ambiciozne mlade fizičare“ ...

Matematika doba Kerala

Kerala je mesto u južnij indiji u kome je Madhava iz Sangamargrame oko 1300 godine osnovao školu astronimije. Škola je imala još 6 bitnih sledbenika koji iza sebe ostavili velika otkrića kako iz astronomije tako i iz matematike, jer su proučavajući astronimiju razvili zavidan matematički aparat.Najbitnija matematička dostignuća su u razvoju trigonometrijskih funkcija i matematičkoj analizi. Delo u kome su ova dostignuća prikazana čak i sa dokazima što je neobično za to vreme je delo indijskog astronoma Jestadeve koje se zove Juktibasa (racionalni jezik matematike).

U prvom delu se prikazuju matematička analiza (prvi rad ikada koji se time bavi), algebra, aritmetika, razlomci, logika a u drugom astronomija.

Na poćetku dela su dati dokazi pitagorine teoreme obima kruga kao i formule za arkus tanges ugla koja glasi :

r\Theta = \frac {r \sin\Theta} {\cos\Theta} - \frac {1} {3}r\frac {(\sin\Theta)^3} {(\cos\Theta)^3} + \frac {1} {5}r\frac {(\sin\Theta)^5} {(\cos\Theta)^5} - \frac {1} {7}r\frac {(\sin\Theta)^7} {(\cos\Theta)^7}+\dots

odnosno:

\Theta = \tan\Theta - \frac {1} {3} \tan^3\Theta + \frac {1} {5} \tan^5\Theta - \dots

Takođe daje se i beskonačni niz za vrednost π:

\frac {\pi} {4} = 1 - \frac {1} {3} + \frac {1} {5} - \frac {1} {7} + \dots + \frac {(-1)^n} {2n+1} + \dots

Kao i transformacija ovog niza:

\pi = \sqrt{12} \left(1 - \frac {1} {3\cdot3} + \frac {1} {5\cdot3^2} - \frac {1} {7\cdot3^3} + \dots\right)

A daju se i formule za same trigonometrijske funkcije:

\sin x = x - \frac {x^3} {3!} + \frac {x^5} {5!} - \frac {x^5} {5!} + \dots

U svim ovim formulama primenjivani su njihovi principi koji u stvari predstavljaju današnju osnovu analize, konkretnije osnovni oblik tajlerovog reda , limesa, izvoda funkcije kao i ideja da je površina ispod zakrivljene linije njen integral. Primeri njihove matematičke indukcije i znanja nizova su formule beskonačnih nizova:

\frac {1} {1-x} = 1 + x + x^2 + x^3 + \dots

1^p + 2^p + \dots + n^p \approx \frac {n^{p+1}} {p+1}

Oni i razvijaju nasleđe svojih velikih predhodnika, pa na primer za interpolaciju polinoma beskonačne sume se dobija:

\lim_{\alpha\to 0} = \frac {jya (x + \alpha) - jya x} {\alpha} = \frac {koj x} {R}

\lim_{\alpha\to 0} = \frac {koj (x + \alpha) - koj x} {\alpha} = \frac {-jya x} {R}

Mada oni nisu baš poznavali pojam limesa razumeli su da razlomak sa leve strane može da bude blizak onom sa desne onoliko koliko se želi ako \alpha teži 0. Jyesthadeva je oko 1500. godine ovo prvi dokazao koristeći izvod a zanimljivo je da se oni koriste i pre njega.

Na slici iznad PX je arc dužine x a PT je \alpha, veličina kojom se arc dužine povećava. Kvantitet jya(x + \alpha) - jya x je k veličina koju nača funkcija menjaoznačićemo je posebnom notacijom.

\Delta (jya x) = jya(x + \alpha) - jya x

Problem je procenit ST = \Delta(jya x) kao i PS = -\Delta(koj \alpha). Ako sa Q označimo

srednju tačku arc dužine PT, i primetimo da je OQ normala simetrale PT.

Zatim treba da se objasni zašto je koj (x + a) \le koj x za \alpha \ge 0 i samim tim

zašto je PS = -\Delta(koj \alpha).

Za male promene luka PT je α=PT, pa se daljim aproksimacjaama dobija

\lim_{a \to 0} = \frac {\alpha} {PT} = \lim_{a \to 0} = \frac {BQ} {jya x} = \lim_{a \to 0} = \frac {OB} {koj x} = 1

Iz sličnosti trouglova TSB i OBQ je:

\frac {ST} {PT} = \frac {OB} {OQ} \implies \frac {\Delta(jya x} {\alpha} \frac {\alpha} {PT} = \frac {koj x} {R} \frac {OB} {koj x}

\frac {PS} {PT} = \frac {BQ} {OQ} \implies \frac {-\Delta(koj x} {\alpha} \frac {\alpha} {PT} = \frac {jya x} {R} \frac {BQ} {jya x}

Nakon ovoga se primenjuje Brahmina formula interpolacije pa je dalje za \alpha \to o:

jya (x + t) \approx jya x + \frac {t} {R} koj x - \frac {t^2} {2R^2} jya x

Series NavigationBaskara IIIstorija matematike Indije – UvodSutre i Period Veda

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: