Slide5

Predavanje: “Definitivno: žene (ni)su sa Venere”

Predavanje „Definitivno: žene (ni)su sa Venere“ biće održano u četvrtak 21. januara od 19:00 h. Predavač će biti prof. dr Dragan Gajić.Predavanje možete pratiti na sajtu i YouTube kanalu Astronomskog društva "Alfa" iz Niša, kao ...
earth-sun

Svet nauke u 2020. godini

Stigao je kraj još jedne i to prilično "lude" godine. Godine u kojoj ništa nije bilo isto kao pre, godine u kojoj se mnogo toga promenilo, godine u kojoj mnogo ...
predavanje-02

Predavanje “Sunce – zvezda Sunčevog sistema”

U četvrtak 24. decembra od 19 h biće održano online predavanjeSunce – zvezda Sunčevog sistemapredavač će biti dr Milan Milošević. Predavanje možete pratiti na sajtu AD Alfa i na našem YouTube kanalu, kao i na ...
Jupiter-and-Saturn-777x466-1

Velika konjunkcija Jupitera i Saturna

Sutra, u ponedeljak 21. decembra 2020. godine dve najveće planete Sunčevog sistema. Jupiter i Saturn, na nebu će izgledati vrlo blizu. Kad padne mrak, na zapadu, nisko na horizontu sijaće ...
solar-system-nasa

Serija predavanja: “Ekskurzija kroz Sunčev sistem”

Astronomsko društvo “Alfa”, u sklopu projekta “Malim koracima ka astronomiji” vas, kroz seriju predavanja “vodi” na ekskurziju kroz Sunčev sistem.Kroz niz tematskih predavanja imaćete priliku da se upoznate sa Sunčevim sistemom, Suncem, Zemljom i ...
ada_lovelace_portrait

Rođendan Ejde King Lavlejs - prve programerke

Samo dan kasnije ali i mnogo godina pre rođenja Grejs Hoper, na današnji dan, 10. decembra 1815. godine rođena je Ejda King Lavlejs (Ada Lovelace), ćerka čuvenog engleskog pesnika Lorda Bajrona, ...

Matematika doba Kerala

Kerala je mesto u južnij indiji u kome je Madhava iz Sangamargrame oko 1300 godine osnovao školu astronimije. Škola je imala još 6 bitnih sledbenika koji iza sebe ostavili velika otkrića kako iz astronomije tako i iz matematike, jer su proučavajući astronimiju razvili zavidan matematički aparat.Najbitnija matematička dostignuća su u razvoju trigonometrijskih funkcija i matematičkoj analizi. Delo u kome su ova dostignuća prikazana čak i sa dokazima što je neobično za to vreme je delo indijskog astronoma Jestadeve koje se zove Juktibasa (racionalni jezik matematike).

U prvom delu se prikazuju matematička analiza (prvi rad ikada koji se time bavi), algebra, aritmetika, razlomci, logika a u drugom astronomija.

Na poćetku dela su dati dokazi pitagorine teoreme obima kruga kao i formule za arkus tanges ugla koja glasi :

r\Theta = \frac {r \sin\Theta} {\cos\Theta} - \frac {1} {3}r\frac {(\sin\Theta)^3} {(\cos\Theta)^3} + \frac {1} {5}r\frac {(\sin\Theta)^5} {(\cos\Theta)^5} - \frac {1} {7}r\frac {(\sin\Theta)^7} {(\cos\Theta)^7}+\dots

odnosno:

\Theta = \tan\Theta - \frac {1} {3} \tan^3\Theta + \frac {1} {5} \tan^5\Theta - \dots

Takođe daje se i beskonačni niz za vrednost π:

\frac {\pi} {4} = 1 - \frac {1} {3} + \frac {1} {5} - \frac {1} {7} + \dots + \frac {(-1)^n} {2n+1} + \dots

Kao i transformacija ovog niza:

\pi = \sqrt{12} \left(1 - \frac {1} {3\cdot3} + \frac {1} {5\cdot3^2} - \frac {1} {7\cdot3^3} + \dots\right)

A daju se i formule za same trigonometrijske funkcije:

\sin x = x - \frac {x^3} {3!} + \frac {x^5} {5!} - \frac {x^5} {5!} + \dots

U svim ovim formulama primenjivani su njihovi principi koji u stvari predstavljaju današnju osnovu analize, konkretnije osnovni oblik tajlerovog reda , limesa, izvoda funkcije kao i ideja da je površina ispod zakrivljene linije njen integral. Primeri njihove matematičke indukcije i znanja nizova su formule beskonačnih nizova:

\frac {1} {1-x} = 1 + x + x^2 + x^3 + \dots

1^p + 2^p + \dots + n^p \approx \frac {n^{p+1}} {p+1}

Oni i razvijaju nasleđe svojih velikih predhodnika, pa na primer za interpolaciju polinoma beskonačne sume se dobija:

Matematika doba Kerala 1

\lim_{\alpha\to 0} = \frac {jya (x + \alpha) - jya x} {\alpha} = \frac {koj x} {R}

\lim_{\alpha\to 0} = \frac {koj (x + \alpha) - koj x} {\alpha} = \frac {-jya x} {R}

Mada oni nisu baš poznavali pojam limesa razumeli su da razlomak sa leve strane može da bude blizak onom sa desne onoliko koliko se želi ako \alpha teži 0. Jyesthadeva je oko 1500. godine ovo prvi dokazao koristeći izvod a zanimljivo je da se oni koriste i pre njega.

Na slici iznad PX je arc dužine x a PT je \alpha, veličina kojom se arc dužine povećava. Kvantitet jya(x + \alpha) - jya x je k veličina koju nača funkcija menjaoznačićemo je posebnom notacijom.

\Delta (jya x) = jya(x + \alpha) - jya x

Problem je procenit ST = \Delta(jya x) kao i PS = -\Delta(koj \alpha). Ako sa Q označimo

srednju tačku arc dužine PT, i primetimo da je OQ normala simetrale PT.

Zatim treba da se objasni zašto je koj (x + a) \le koj x za \alpha \ge 0 i samim tim

zašto je PS = -\Delta(koj \alpha).

Za male promene luka PT je α=PT, pa se daljim aproksimacjaama dobija

\lim_{a \to 0} = \frac {\alpha} {PT} = \lim_{a \to 0} = \frac {BQ} {jya x} = \lim_{a \to 0} = \frac {OB} {koj x} = 1

Iz sličnosti trouglova TSB i OBQ je:

\frac {ST} {PT} = \frac {OB} {OQ} \implies \frac {\Delta(jya x} {\alpha} \frac {\alpha} {PT} = \frac {koj x} {R} \frac {OB} {koj x}

\frac {PS} {PT} = \frac {BQ} {OQ} \implies \frac {-\Delta(koj x} {\alpha} \frac {\alpha} {PT} = \frac {jya x} {R} \frac {BQ} {jya x}

Nakon ovoga se primenjuje Brahmina formula interpolacije pa je dalje za \alpha \to o:

jya (x + t) \approx jya x + \frac {t} {R} koj x - \frac {t^2} {2R^2} jya x

Series NavigationBaskara IIIstorija matematike Indije – UvodSutre i Period Veda

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: