Konkurs-small

Konkurs za radove učenika

Niš Young Minds Section organizuje konkurs za sve zainteresovane učenike osnovnih i srednjih škola na teritoriji Republike Srbije u okviru projekta „Izvan redova i van okvira: Seminar za ambiciozne mlade fizičare“ ...
black-hole

O crnim rupama i medicinskoj fizici u četvrtak na PMF-u u Nišu

U četvrtak 31. oktobra od 20 h nastavlja se serija naučno-popularnih predavanja u organizaciji “Niš Young Minds Section” i Departmana za fiziku PMF-a.Ovog četvrtka Young Minds sekcija iz Niša pripremila je dva zanimljiva predavanja iz astrofizike i ...
enjoyphysics

Prvo predavanje u organizaciji Niš Young Minds Section

U četvrtak 24. oktobra u amfiteatru Prirodno-matematičkog fakulteta u Nišu sa početkom u 20 časova, biće održano predavanje prof. dr Gorana Đorđevića sa Departmana za fiziku na temu:Od Saveza komunista do „Mladih umova”Kosmologija i ...
safer-internet

Svetska nedelja svemira i Međunarodna noć posmatranja Meseca u Nišu

Povodom Svetske nedelje svemira i Međunarodne noći posmatranja Meseca od subote, 5. oktobra do četvrtka 10. oktobra Astronomsko društvo “Alfa” i Departman za fiziku Prirodno-matematičkog fakulteta u Nišu organizuju seriju ...
apolo11-pre-poletanja

Apolo 11: 50 godina kasnije

Na današnji dan, pre tačno 50 godina, tj. 16. jula 1969. godine u 9:32h po lokalnom vremenu (13:32 po Griniču), iz Kennedy Space Center-a lansirana je raketa nosač Saturn V. Na vrhu te ...
sunbathing

Sunčanje i/ili zdravlje? Izaberite sami!

Sunce, taj žuti disk koji svakoga dana putuje po plavom nebeskom svodu, je samo jedna od nekoliko milijardi zvezda rasutih svuda po praznom prostoru svemira. Ono je jedna sasvim obična ...

Bramagupta

Drugi u hronološkom nizu velikih astronoma i matematičara drevne indije je Bramagupta . On je rođen 598 godine u severozapadnoj Indiji, a većinu života proveo je gradu Bilamal (danačnji Binmal) gde je bio vođa opservatorijuma. Za vreme provedeno tamo napisao je četiri teksta vezana za matematiku i astronomiju od kojih je najbitniji Bramasputasidanta (pravilno utvrđene doktrine Brahme) koje se sastoje iz 25 poglavlja, a odatle se i najviše zna o njegovom životu i mestu boravka. Umro je 668 godine.

Glavni doprinos dao je u algebri, aritmetici , gometriji, trigonometriji i astronomiji.

Bramagupta daje rešenje opšte linearne jednačine kao:

x = \frac {e - c} {b - d}

A dao je i dve definicije rešenja opšte kvadratne jednačine :

„Kada se srednji broj oduzme od kvadratnog korena konstanti (rupas) i kvadrati pomnože sa 4 a od njih se oduzme kvadrat srednjeg broja i kada se podeli sa dva puta kvadrat“

Ovo je ekvivalentno jednačini:

x = \frac {\sqrt {4ac + b^2} - b} {2a}

Takođe pojavlju se i formula:

x = \frac {\sqrt {ac + \frac {b^2} {4}} - \frac {b} {2}} {a}

U aritmetici on daje 5 osnovnih operacija sa razlomcima:

\frac {a} {c} + \frac {b} {c}, \frac {a} {c} \cdot \frac {b} {d}, \frac {a} {1} + \frac {b} {d}, \frac {a} {c} + \frac {b} {d} \cdot \frac {a} {c} = \frac {a(b+d)} {cd}

kao i :

\frac {a} {c} - \frac {b} {d} \cdot \frac {a} {c} = \frac {a(b-d)} {cd}

Bitna odlika njegove aritmetike je i to što je on prvi počeo da tretira nulu kao broj. Pa je i opisao operacije sa nulom gde navodi da je :

„Zbir dva pozitvna broja je pozitina, dva negativna je negativna , negativnog i pozitinog je njihova razlika . Zbir pozitivnog i nule je pozitivna , a negativnog i nule je negativna „

Za deljenje je napisao:

„ Pozitivan podeljen pozitivnim i negativan podeljen negativnim je pozitivan , nula podeljena nulom je nula , pozitivan podeljen negativnim je negativan a pozitivan ili negativan podeljen nulom je nula“

Ovo je jako zanimljivo jer kod njega \frac {0} {0} = 0, sa čim se ni neki drugi indijski matematičari nisu slagali a ovaj problem je i danas nedefinisan u matematici.

Rešenja diofantske i pelove jednačine su takođe bitne , ali …

U geometriji je danas poznata bramaguptina forula slična heronovom obrascu koja se koristi za površinu četvorougla i koja kaže :

\sqrt {(s - a)(s - b)(s - c)(s - d)}

Bramaguptina teorema kaže da je AF = FD

Ova teorema se koristi za tetivni četvorougao i kaže da su njegove dijagonale međusobno normalne, kao i da normala na stranu od tačke preseka dijagonale uvek polovi suprotnu stranu.

Naravno i on daje formulu za π koja je vrlo „praktična“ i iznosi \sqrt 10.

Nakon ovoga mogu se naći delovi posvećeni geometriji i računanju površine i zapremine ravnih zarubljenih i pravougaonih figura, kao što su prizme i piramide.

Jedno zaista neverovatno dostignuće je interpolaciona formula. Odnosno formula za računanje vrednosti funkcije dve veličine kada se između njih umetne treća. Ova formula je za poseban slučaji daje približnu vrednost funkcije f vrednosti a + xh , (h > 0 i -1 \le x \le 1) kao:

f(a + xh) \approx f(a) + x \left( \frac {\Delta f(a) + \Delta f(a - h)} {2} \right) + \frac {x^2 \Delta^2 f(a - h)} {2!}

Najveći trag ipak ostavio je u astronomiji , pa se kaže da su arabljani svoja bva saznanja o astronomiji stekli upravo iz prevoda bramaguptine brahmaspudasidante. On tu između ostalog objašnjava da je mesec bliži zemlji od sunca i da osvetljenost meseca zavisi od relativne pozicije sunca i meseca.

Još bitniji je njegov odgovor na jednu kritiku zbog navoda da je zemlja sfera a ne ploča , jer da je tako „kamenje i ploče bi padale sa zemlje“

Na to je on odgovorio :

„Sve teške stvari su privučene ka centru zemlje , zemlja je sa svih svojih strana ista , svi ljudi na zemlji stoje uspravno , i sve teške stvari padaju ka zemlji po zakonima priride , jer je priroda zemlje da privlači i zadržava ove stvari kao što je priroda vode da teče , vatre da gori a vetra da se kreće. … Zemlja je jedina niska stvar , i seme se uvek vraća zemlji bez obzira u kom se pravcu baci i nikad ne napušta zemlju“

Series NavigationSutre i Period VedaMatematika doba Đaina

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: