"Kiša" Perseida iznad Pirineja

Stižu zvezde padalice - meteorski roj Perseidi 2018

Svake vedre noći, ako odete negde daleko od svetla grada i ako ste dovoljno strpljivi možete da vidite nekoliko meteora svakog sata. Meteori, ili zvezde "padalice", kako su u narodu poznate, ...
soda-bikarbona

Mućnuti glavom bez sode bikarbone

Soda bikarbona bez aluminijuma sve leči! I kancer i kandidu, poboljšava probavu, čisti akne, a uz pomoć nje može i da se smrša! Hm… Ali zašto samo kod mene nije ...
TLE2004-Triple1x

Totalno pomračenje Meseca - 27. jul 2018

Za ovu nedelju nebeska mehanika "pripremila" je totalno pomračenje Meseca, i to najduže u ovom veku. Pomračenje počinje 27. jula u 19:14 h po našem vremenu i trajaće sve do ...
201px-Apollo_11_insignia

Apolo 11: 49 godina posle prve razglednice sa Meseca

Na današnji dan, 16. jula 1969. godine u 9:32h po lokalnom vremenu (13:32 po Griniču), iz Kennedy Space Center-a lansirana je raketa nosač Saturn V. Na vrhu te rakete nalazio ...
vuk-karadzic

Vuk Stefanović Karadžić – reformator srpskog jezika i velikan srpske književnosti

"Ja sam do sada nekoliko puta u Srbiju dolazio s punom glavom i torbom rodoljubivih planova samo zato da bi narodu što na polzu služiti mogao, pa kad sam video ...
Novine_a2

Odeljenje i Departman za fiziku na NNB10

Gimnazijsko Odeljenje za učenike sa posebnim sposobnostima za fiziku počelo je sa radom u školskoj 2003/04. godini, u okviru Gimnazije „9. maj“ u Nišu. Naredna generacija „specijalaca“ upisala je prvi ...

Bramagupta

Drugi u hronološkom nizu velikih astronoma i matematičara drevne indije je Bramagupta . On je rođen 598 godine u severozapadnoj Indiji, a većinu života proveo je gradu Bilamal (danačnji Binmal) gde je bio vođa opservatorijuma. Za vreme provedeno tamo napisao je četiri teksta vezana za matematiku i astronomiju od kojih je najbitniji Bramasputasidanta (pravilno utvrđene doktrine Brahme) koje se sastoje iz 25 poglavlja, a odatle se i najviše zna o njegovom životu i mestu boravka. Umro je 668 godine.

Glavni doprinos dao je u algebri, aritmetici , gometriji, trigonometriji i astronomiji.

Bramagupta daje rešenje opšte linearne jednačine kao:

x = \frac {e - c} {b - d}

A dao je i dve definicije rešenja opšte kvadratne jednačine :

„Kada se srednji broj oduzme od kvadratnog korena konstanti (rupas) i kvadrati pomnože sa 4 a od njih se oduzme kvadrat srednjeg broja i kada se podeli sa dva puta kvadrat“

Ovo je ekvivalentno jednačini:

x = \frac {\sqrt {4ac + b^2} - b} {2a}

Takođe pojavlju se i formula:

x = \frac {\sqrt {ac + \frac {b^2} {4}} - \frac {b} {2}} {a}

U aritmetici on daje 5 osnovnih operacija sa razlomcima:

\frac {a} {c} + \frac {b} {c}, \frac {a} {c} \cdot \frac {b} {d}, \frac {a} {1} + \frac {b} {d}, \frac {a} {c} + \frac {b} {d} \cdot \frac {a} {c} = \frac {a(b+d)} {cd}

kao i :

\frac {a} {c} - \frac {b} {d} \cdot \frac {a} {c} = \frac {a(b-d)} {cd}

Bitna odlika njegove aritmetike je i to što je on prvi počeo da tretira nulu kao broj. Pa je i opisao operacije sa nulom gde navodi da je :

„Zbir dva pozitvna broja je pozitina, dva negativna je negativna , negativnog i pozitinog je njihova razlika . Zbir pozitivnog i nule je pozitivna , a negativnog i nule je negativna „

Za deljenje je napisao:

„ Pozitivan podeljen pozitivnim i negativan podeljen negativnim je pozitivan , nula podeljena nulom je nula , pozitivan podeljen negativnim je negativan a pozitivan ili negativan podeljen nulom je nula“

Ovo je jako zanimljivo jer kod njega \frac {0} {0} = 0, sa čim se ni neki drugi indijski matematičari nisu slagali a ovaj problem je i danas nedefinisan u matematici.

Rešenja diofantske i pelove jednačine su takođe bitne , ali …

U geometriji je danas poznata bramaguptina forula slična heronovom obrascu koja se koristi za površinu četvorougla i koja kaže :

\sqrt {(s - a)(s - b)(s - c)(s - d)}

Bramaguptina teorema kaže da je AF = FD

Ova teorema se koristi za tetivni četvorougao i kaže da su njegove dijagonale međusobno normalne, kao i da normala na stranu od tačke preseka dijagonale uvek polovi suprotnu stranu.

Naravno i on daje formulu za π koja je vrlo „praktična“ i iznosi \sqrt 10.

Nakon ovoga mogu se naći delovi posvećeni geometriji i računanju površine i zapremine ravnih zarubljenih i pravougaonih figura, kao što su prizme i piramide.

Jedno zaista neverovatno dostignuće je interpolaciona formula. Odnosno formula za računanje vrednosti funkcije dve veličine kada se između njih umetne treća. Ova formula je za poseban slučaji daje približnu vrednost funkcije f vrednosti a + xh , (h > 0 i -1 \le x \le 1) kao:

f(a + xh) \approx f(a) + x \left( \frac {\Delta f(a) + \Delta f(a - h)} {2} \right) + \frac {x^2 \Delta^2 f(a - h)} {2!}

Najveći trag ipak ostavio je u astronomiji , pa se kaže da su arabljani svoja bva saznanja o astronomiji stekli upravo iz prevoda bramaguptine brahmaspudasidante. On tu između ostalog objašnjava da je mesec bliži zemlji od sunca i da osvetljenost meseca zavisi od relativne pozicije sunca i meseca.

Još bitniji je njegov odgovor na jednu kritiku zbog navoda da je zemlja sfera a ne ploča , jer da je tako „kamenje i ploče bi padale sa zemlje“

Na to je on odgovorio :

„Sve teške stvari su privučene ka centru zemlje , zemlja je sa svih svojih strana ista , svi ljudi na zemlji stoje uspravno , i sve teške stvari padaju ka zemlji po zakonima priride , jer je priroda zemlje da privlači i zadržava ove stvari kao što je priroda vode da teče , vatre da gori a vetra da se kreće. … Zemlja je jedina niska stvar , i seme se uvek vraća zemlji bez obzira u kom se pravcu baci i nikad ne napušta zemlju“

Series NavigationSutre i Period VedaMatematika doba Đaina

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: