davinci

Leonardo da Vinči: Umetnik. Naučnik. Pronalazač.

Pišu: Jovana Savić i Jovana Stanimirović“Onaj ko isključivo ceni praksu bez teorije je poput moreplovca koji se ukrca na brod bez kormila i kompasa, ne znajući kuda se plovi.” - ...
crna-rupa-prva

Prva fotografija crne rupe!

Već nekoliko decenija, a može se reći i vekova, crne rupe privlače ogromnu pažnju kako naučnika tako i javnosti, kroz popularne tekstove, različite ideje i SF romane i (visokobudžetne) filmove.Do ...
dositej-obradovic

Dositej Obradović – srpski prosvetitelj i reformator

„Knjige, braćo moja, knjige, a ne zvona i praporce!“Dositej ObradovićNa današnji dan 28. marta 1811. godine u Beogradu je umro najveći srpski prosvetitelj i reformator – Dositej Obradović. Sahranjen je ...
proposal

CERN – mesto gde je nastao “Internet”

Prvi World Wide Web Logo (Autor: Robert Cailliau)Prethodnih nekoliko godina imali smo prilike da često slušamo o CERN-u, LHC-u - i "najvećem eksperimentu čovečanstva", ulasku Srbije u punopravno članstvo, akceleratoru, ...
using-a-smartphone-accelerometer

Konkurs Mobilni telefon u fizičkom eksperimentu

Digitalna tehnologija i mediji, zasnovani na upotrebi interneta i mobilnih telefona predstavljaju najpopularniji način komuniciranja u savremenom svetu. Mobilni telefoni su naša svakodnevica, a novi modeli se po svojim mogućnostima ...
odeljenje-za-fiziku-novine

Postani i ti deo nove generacije specijalnog Odeljenja za fiziku u Nišu

Ove godine u Odeljenje za učenike sa posebnim sposobnostima za fizikuGimnazije “Svetozar Marković” u Nišu stiže nova, 17. generacija učenika.Kao i prethodnih godina nastavnici i saradnici Departmana za fiziku PMF-a, u saradnji sa ...

Bramagupta

Drugi u hronološkom nizu velikih astronoma i matematičara drevne indije je Bramagupta . On je rođen 598 godine u severozapadnoj Indiji, a većinu života proveo je gradu Bilamal (danačnji Binmal) gde je bio vođa opservatorijuma. Za vreme provedeno tamo napisao je četiri teksta vezana za matematiku i astronomiju od kojih je najbitniji Bramasputasidanta (pravilno utvrđene doktrine Brahme) koje se sastoje iz 25 poglavlja, a odatle se i najviše zna o njegovom životu i mestu boravka. Umro je 668 godine.

Glavni doprinos dao je u algebri, aritmetici , gometriji, trigonometriji i astronomiji.

Bramagupta daje rešenje opšte linearne jednačine kao:

x = \frac {e - c} {b - d}

A dao je i dve definicije rešenja opšte kvadratne jednačine :

„Kada se srednji broj oduzme od kvadratnog korena konstanti (rupas) i kvadrati pomnože sa 4 a od njih se oduzme kvadrat srednjeg broja i kada se podeli sa dva puta kvadrat“

Ovo je ekvivalentno jednačini:

x = \frac {\sqrt {4ac + b^2} - b} {2a}

Takođe pojavlju se i formula:

x = \frac {\sqrt {ac + \frac {b^2} {4}} - \frac {b} {2}} {a}

U aritmetici on daje 5 osnovnih operacija sa razlomcima:

\frac {a} {c} + \frac {b} {c}, \frac {a} {c} \cdot \frac {b} {d}, \frac {a} {1} + \frac {b} {d}, \frac {a} {c} + \frac {b} {d} \cdot \frac {a} {c} = \frac {a(b+d)} {cd}

kao i :

\frac {a} {c} - \frac {b} {d} \cdot \frac {a} {c} = \frac {a(b-d)} {cd}

Bitna odlika njegove aritmetike je i to što je on prvi počeo da tretira nulu kao broj. Pa je i opisao operacije sa nulom gde navodi da je :

„Zbir dva pozitvna broja je pozitina, dva negativna je negativna , negativnog i pozitinog je njihova razlika . Zbir pozitivnog i nule je pozitivna , a negativnog i nule je negativna „

Za deljenje je napisao:

„ Pozitivan podeljen pozitivnim i negativan podeljen negativnim je pozitivan , nula podeljena nulom je nula , pozitivan podeljen negativnim je negativan a pozitivan ili negativan podeljen nulom je nula“

Ovo je jako zanimljivo jer kod njega \frac {0} {0} = 0, sa čim se ni neki drugi indijski matematičari nisu slagali a ovaj problem je i danas nedefinisan u matematici.

Rešenja diofantske i pelove jednačine su takođe bitne , ali …

U geometriji je danas poznata bramaguptina forula slična heronovom obrascu koja se koristi za površinu četvorougla i koja kaže :

\sqrt {(s - a)(s - b)(s - c)(s - d)}

Bramaguptina teorema kaže da je AF = FD

Ova teorema se koristi za tetivni četvorougao i kaže da su njegove dijagonale međusobno normalne, kao i da normala na stranu od tačke preseka dijagonale uvek polovi suprotnu stranu.

Naravno i on daje formulu za π koja je vrlo „praktična“ i iznosi \sqrt 10.

Nakon ovoga mogu se naći delovi posvećeni geometriji i računanju površine i zapremine ravnih zarubljenih i pravougaonih figura, kao što su prizme i piramide.

Jedno zaista neverovatno dostignuće je interpolaciona formula. Odnosno formula za računanje vrednosti funkcije dve veličine kada se između njih umetne treća. Ova formula je za poseban slučaji daje približnu vrednost funkcije f vrednosti a + xh , (h > 0 i -1 \le x \le 1) kao:

f(a + xh) \approx f(a) + x \left( \frac {\Delta f(a) + \Delta f(a - h)} {2} \right) + \frac {x^2 \Delta^2 f(a - h)} {2!}

Najveći trag ipak ostavio je u astronomiji , pa se kaže da su arabljani svoja bva saznanja o astronomiji stekli upravo iz prevoda bramaguptine brahmaspudasidante. On tu između ostalog objašnjava da je mesec bliži zemlji od sunca i da osvetljenost meseca zavisi od relativne pozicije sunca i meseca.

Još bitniji je njegov odgovor na jednu kritiku zbog navoda da je zemlja sfera a ne ploča , jer da je tako „kamenje i ploče bi padale sa zemlje“

Na to je on odgovorio :

„Sve teške stvari su privučene ka centru zemlje , zemlja je sa svih svojih strana ista , svi ljudi na zemlji stoje uspravno , i sve teške stvari padaju ka zemlji po zakonima priride , jer je priroda zemlje da privlači i zadržava ove stvari kao što je priroda vode da teče , vatre da gori a vetra da se kreće. … Zemlja je jedina niska stvar , i seme se uvek vraća zemlji bez obzira u kom se pravcu baci i nikad ne napušta zemlju“

Series NavigationSutre i Period VedaMatematika doba Đaina

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: