davinci

Leonardo da Vinči: Umetnik. Naučnik. Pronalazač.

Pišu: Jovana Savić i Jovana Stanimirović“Onaj ko isključivo ceni praksu bez teorije je poput moreplovca koji se ukrca na brod bez kormila i kompasa, ne znajući kuda se plovi.” - ...
crna-rupa-prva

Prva fotografija crne rupe!

Već nekoliko decenija, a može se reći i vekova, crne rupe privlače ogromnu pažnju kako naučnika tako i javnosti, kroz popularne tekstove, različite ideje i SF romane i (visokobudžetne) filmove.Do ...
dositej-obradovic

Dositej Obradović – srpski prosvetitelj i reformator

„Knjige, braćo moja, knjige, a ne zvona i praporce!“Dositej ObradovićNa današnji dan 28. marta 1811. godine u Beogradu je umro najveći srpski prosvetitelj i reformator – Dositej Obradović. Sahranjen je ...
proposal

CERN – mesto gde je nastao “Internet”

Prvi World Wide Web Logo (Autor: Robert Cailliau)Prethodnih nekoliko godina imali smo prilike da često slušamo o CERN-u, LHC-u - i "najvećem eksperimentu čovečanstva", ulasku Srbije u punopravno članstvo, akceleratoru, ...
using-a-smartphone-accelerometer

Konkurs Mobilni telefon u fizičkom eksperimentu

Digitalna tehnologija i mediji, zasnovani na upotrebi interneta i mobilnih telefona predstavljaju najpopularniji način komuniciranja u savremenom svetu. Mobilni telefoni su naša svakodnevica, a novi modeli se po svojim mogućnostima ...
odeljenje-za-fiziku-novine

Postani i ti deo nove generacije specijalnog Odeljenja za fiziku u Nišu

Ove godine u Odeljenje za učenike sa posebnim sposobnostima za fizikuGimnazije “Svetozar Marković” u Nišu stiže nova, 17. generacija učenika.Kao i prethodnih godina nastavnici i saradnici Departmana za fiziku PMF-a, u saradnji sa ...

Гама-зраци

Гама честице је открио 1900. године француски физичар Пол Урлих Вилар приликом посматрања уранијума.

Гама-зраци су електромагнетна зрачења веома кратких таласних дужина (0,005-0,4 А), која бивају изражена у моменту прелаза језгра са енергетски вишег нивоа на енергетски нижи ниво. Из тога разлога гама-зрачење пружа податке о енергетским нивоима у језгру, као што су оптички спектри Х-зрачења говоре о електронским нивоима у томском омотачу.

Брзина кретања ових зрака је равна брзини свјетлости. Гaма-зраци на свом путу кроз ваздух производе релативно слабу јонизацију, али су најпродорнији и пролазе мање-више кроз све материјале. Њихов домет зависи од енергије.

Гама-распад је за разлику од алфа, бета-распада мало специфичнији. Овдје не долази до правог распада језгра на друго језгро, већ је гама распад неке врсте емисија гама зрака. При томе језгро прелази из побуђеног стања у коначно стање са емисијом гама-честица, које зовемо фотони.

Језгро потомак ( настало распадом језгра родитеља) не налази се у основном стању, него у побуђеном. Приликом преласка језгра из побуђеног у основно стање емитује се гама-фотон, слично као код атома приликом његовог преласка из побуђеног у основно стање,када се емитује фотон рендгенског зрачења.

При пролазу кроз материју гама-зраци губе енергију-апсорбују се на више начина, од којих су најважнији: Фотоелектрични и Комптов ефекат и стварање парова позитрон-електрон.

Фотоелектрични ефекат долази до изражаја у случају дејства гама-зрака ниских енергија на атоме са већом атомском тежином,при чему долази до избијања електрона из погођених атома. Кинетичка енергија ослобођених електрона (А=Е-Р)једнака је разлици енергија упадног гама зрака (Е) и енергије везивања електрона у атом (Р). Комптов ефекат игра виднију улогу у случају дејства гама-зрака виших енергија на апсорбере са мањом атомском тежином. При судару са слободним или лабилно везаним електронима гама-зраци предају дио своје енергије,а сами продужавају да се крећу са промјењеним правцем и брзином. Гама зраци високих енергија (преко 1,02 МеV) при судару са материјалима велике атомске тежине губе цјелокупну енергију и стварањем парова позитрон-електрон престају да постоје.

Изложени јаком магнетном пољу гама-зраци не скрећу, пошто нису наелектрисани. Они најчешће прате алфа и бета емисију.

Могу проћи и оловну плочу дебљине 20см. Њихова путања у ваздуху може да изнеси и по неколико метара и они су знатно продорнији и опаснији него алфа и бета честице.

Гама зраци су продорна зрачења која су по својим особинама веома слична рендгенским зрацима, само што су често још продорнија од ових. Као и рендгенске зраке ове јонизују ваздух, дјелују на фотографску плочу, при пролазу кроз кристале настаје дифракција итд. Апсорпција расте са порастом атомског броја елемената. Међутим,продорна моћ рендгенског зрачења расте с повећањем напона на рендгенској цијеви. При кочењу електрона убрзаних напоном од неколико милиона волти добија се закочно рендгенско зрачење,које се ни по чему не разликује од гама-зрачења. Дакле,поређење својстава рендгенског и гама-зрачења показује да су ове двије врсте зрачења потпуно исте природе. Према томе,гама зрачења представљају електромагнетне таласе. Таласна дужина гама зрачења веома је мала,па је,према томе,енергија гама-фотона врло велика. Док енергија ренгенског зрачења за техничку употребу иде и до неколико keV,енергија гама-зрачења иде и до неколико MeV.

Мјерења су показала да гама-фотони емитовани из различитих радиоактивних супстанција имају различиту енергију.

У принципу, за заштиту од гама зрачења користе се материјали направљени од елемената великог редног броја који добро апсорбује гама-зрачење чија дебљина се одређује према очекиваним максималним интензитетима зрачења. Такви материјали су олово,бетонски зидови,земљане препреке итд.

биће настављено…

[wptranslit]

Series NavigationЗаштита од радиоактивног зрачењаМјерење масе алфа и бета-честицаРадиоактивни распад
4 Comments
  1. avatar 01. 05. 2013.
  2. avatar 09. 05. 2013.
  3. avatar 09. 05. 2013.
  4. avatar 09. 05. 2013.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: